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Study of the Effects of ECH Power and Pulse Length
on Preionization in the KSTAR Tokamak
Young-soon Bae, Won Namkung, Member, IEEE, Moo Hyun Cho, and Alan C. England

Abstract—In this paper, we present the results of a study of
the preionization effects for the Korean Superconducting Tokamak
Advanced Research (KSTAR) tokamak ( 0 = 1 8m, = 0 5m,
= 2 = 0 8 = 3 5 T, = 2 MA, pulse = 300 s) that

is under construction by the Korea Basic Science Institute (KBSI).
The preionization will be given by the Electron Cyclotron Heating
(ECH) System with an 84-GHz 500-kW gyrotron tube being made
by Communications and Power Industries. The ECH preionization
effects are investigated by a 0-dimensional code (TECHP0D1 ) that
includes the operational scenarios of KSTAR tokamak. The code
is now improved and advanced with carbon, oxygen, and iron im-
purity effects, and with the self and mutual inductances of seven
pairs of superconducting poloidal coils for the KSTAR tokamak.

Index Terms—Electron cyclotron heating (ECH), gyrotron,
Korean superconducting tokamak advanced research (KSTAR),
poloidal, preionization.

I. INTRODUCTION

E LECTRON cyclotron heating (ECH) preionization has
been successfully applied in a variety of tokamaks and

is normally used to produce the plasma in contemporary
stellarators. The general conclusion of these experiments is that
ECH was effective in producing a good plasma which would:
(a) reduce the startup runaway electrons; (b) reduce the voltage
required to start the plasma current; and (c) somewhat reduce
the Volt-s expenditure from the transformer needed to establish
the plasma. The motivation for many of those experiments
was the pioneering work of Penget al. [1]. While some of the
predictions of the theory were not born out by the experiments,
nevertheless, the theory was important in showing the value
of preionization for voltage reduction. On the basis of the
experimental work by Kulcharet al. [2], a model was produced
which was able to adequately describe the experiments in
ISX-B. Later experimental work included the large tokamak
experiments in T-10 [3] and DIII-D [4]. The Modeling efforts
of Fidone and Granata [5] showed that for a large tokamak,
energy deposition would not occur at the electron cyclotron
resonance heating (ECRH) layer. Maroli and Petrillo [6] added
plasma radial growth and impurities. Lloydet al. [7] produced
a more advanced model and added the effect of impurities, but
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did not consider the error field effects and poloidal field coil
circuit equations.

Because of the thick vacuum vessel wall, superconducting
poloidal field coils, and the concomitant limited current ramp
rates, the generated loop voltage for breakdown may be too low
to provide breakdown reliably in the Korean superconducting
advanced research (KSTAR) tokamak [8]. As will be shown in
the following, the current buildup time is more than 1 s. Even-
tually, the plasma duration will be 300 s. For KSTAR tokamak,
preionization was studied earlier using the 0-dimensional (0-D)
code (TECHP0D) for many other initial conditions [9]–[11]
considering the effects of the error field and impurities. How-
ever, KSTAR has seven pairs of superconducting poloidal field
coils that are controlled independently, we made a more ad-
vanced code to which the additional circuit parameter are added
with circuit parameters of self inductances and mutual induc-
tances. These parameters were calculated by KBSI [12]. There-
fore, in the present set of calculations, the effect of the additional
circuit equations is examined.

This paper presents subsequent results of the preionization
simulation using this advanced code that is quite adequate for
describing the physical process in KSTAR tokamak of major
radius m and minor radius m. The code is
0-D so that the elongationand triangularity are not relevant
parameters. Similarly, the effect of variation of the initial minor
radius is not examined. The present version of the code allows
the minor radius to grow but the radius is held constant for these
studies. The variation of the minor radius would introduce an
artificiality into the results that is not justified by the 0-D char-
acter of the code. Similarly, whether the energy deposition is at
the ECR layer or the upper hybrid layer is not relevant to the re-
sults. The complexity of the plasma expanding in minor radius
can be the subject of future studies. Previously, it has also been
found [2] that the best results are obtained with a parallel index
of refraction, of 0.5 and 100% -mode polarization. This
implies that the radiation incident on the plasma either from the
high-field side or from the low-field side is transformed by a
polarization rotator on the inside wall and reflected back to the
plasma as -mode.

II. PREIONIZATION MODEL

The model of the preionization was first applied to the ISX-B
tokamak for early preionization experiments [2], [13]. As we
already mentioned, more advanced models have appeared since
that time [5]–[7]. The model in use here includes the circuit
equations of seven pairs of controlled PF coils and the effects
of hydrogen ions and impurities. Except for the impurity effects
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and the additional circuit equations for the KSTAR tokamak, a
detailed discussion of the other equations is found in the pre-
vious paper [2]. The five main equations are as follows: 1) the
continuity equation; 2) the density conservation equation, i.e.,
the time variation of the neutral density is the same as that of the
electron density; 3) the electron energy density equation; 4) the
ion energy density equation; and 5) the circuit equation. Here,
we describe the circuit equation for the KSTAR tokamak, the
energy density equations, and the radiation power due to impu-
rities. Inclusion of hydrogen ions and impurities gives the time
variations of the energy densities as shown in the following:

(1)

(2)

where is the plasma volume is the electron
energy density, and is the ion energy density. is the
ECH power coupled to the plasma given as

[14], where is the RF power
delivered to the plasma, and are the dimensionless optical
depths for the ordinary mode and extraordinary mode, and
and are the fractional powers for the ordinary and extraordi-
nary modes, respectively. is the ohmic heating power given
as simply , where is the plasma current and is the
plasma resistance. is the ionization and radiation loss
due to ionization and the radiation emitted by the energy level
change processes, is the power transferred from electrons
to ions by equipartition, is the bremsstrahlung power
loss due to the hydrogen and impurity ions, and is the
charge exchange power loss between hydrogen atom and hy-
drogen ions. The detail formulas of , , and

are described in [7]. is the fraction of the power lost
from the line radiation through the interaction between electrons
and impurities [15]. All of the power expressions have analytic
forms except for the impurity line radiation power loss ( )
expressions that are obtained from fittings to the experimental
data. The fitted formulas of are made from the Figs. 3(f),
4(f), and 5(f) of [15] for the carbon, oxygen, and iron impuri-
ties, respectively. Carbon, oxygen, and iron are chosen because
they are the most probable impurities due to the expected com-
position of the first wall (special carbon composite on the stain-
less-steel vessel). The fitted formulas are of the form

(3)

where, for the
carbon impurity,
for the oxygen impurity, and

for the iron impurity with . For these
fittings, the curve labeled is chosen to see the distin-
guishable impurity effects. The impurity ion density is assumed
to be produced with a variable influx rate, i.e., ,
where is the fraction of the impurity to the electron density.
It is easily understood that the variable influx rate gives the con-
stant considering where

TABLE I
SELF AND MUTUAL INDUCTANCESBETWEEN SEVEN PAIRS OF POLOIDAL

FIELD COILS AND PLASMA IN UNITS OF mH

is the hydrogen ion density and is the atomic number of the
impurity. The error field loss rate is given as

(4)

where, is the electron thermal velocity,is the minor radius
of the plasma, and is the critical current, .
The larger anticipated field errors may mean that there is no
poloidal field null in the vacuum vessel. The is the drift loss
rate [16], and the energy loss rate is given by the empir-
ical law from “Alcator scaling” [17] when the plasma current
is greater than the critical current. When the plasma current is
lower than the critical current, the energy loss rate is scaled by
the ratio of the plasma current to the critical current. Both elec-
trons and ions loss rates are assumed to obey Alcator scaling
since the temperatures are low.

The circuit equation for the seven pairs of the KSTAR PF
coils is

(5)

In (5), are indexes for the seven pairs of PF coils and
is for the plasma, is the plasma resistance, and

are the mutual inductances between the PF coils and the plasma.
From (5), we get the plasma current change over dt

(6)

The data for the mutual inductances between the PF coils and the
plasma and for the self inductance of the plasma are calculated
and listed in Table I. The rate of change of the currents in the
PF coils are assumed to be given by constant values
between the specified times as specified for the first phase of the
KSTAR tokamak operation [18]. Equation (6) is the difference
between the externally applied loop voltage and the resistive
voltage of the plasma. The externally applied loop voltage is

(7)

and the resistive voltage is

(8)
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The plasma resistance is

(9)

The plasma conductivity is given as follows:

(10)

The electron–ion collision rate and the electron–atom colli-
sion rate are found in the NRL formulary [19].

III. RESULTS

There are three kinds of input conditions—one for the mi-
crowave source, another for the KSTAR plasma, and the other
for the poloidal field (PF) coils. The microwave source for the
KSTAR ECH system is a CPI gyrotron tube. The gyrotron tube
can generate a maximum of 500 kW with pulse lengths up to
2.0 s. However, the power delivered to the plasma through the
waveguide and mirror-optics system is smaller than 500 kW due
to various effects such as mode conversion, resistive losses, op-
tical losses, etc. From the KSTAR ECH system design, the total
power lost is 9%, so that the delivered power to the KSTAR
plasma is approximately 455 kW. Since the power and the pulse
length can be adjusted by the gyrotron power supply, the power
and the pulse length are employed as the input parameter in the
simulation. For the KSTAR plasma, we consider the following
input parameters: the major radius ( m), the minor ra-
dius ( m), the initial neutral density , the error field

, and the impurities such as carbon, oxygen, and iron. The
major radius and minor radius are fixed in all simulations. The
condition for the PF coils is already explained in the previous
section. The important parameter for the PF coils is the begin-
ning time of the current sweep of the coils after the ECH
power is turned on at time . We call as the ohmic
heating delay time.

A. Temporal Behaviors of Plasma Parameters

The following initial conditions are used: kW for
duration of 2.0 s, ms, m, m,

m mT. Fig. 1 shows the tem-
poral behaviors of the electron temperature , the plasma
current , the loop voltage , the resistive voltage ,
the electron density , the electron energy density ,
and the PF coil currents without considering any impu-
rities. Fig. 2 shows the impurity effects on the output param-
eters for the carbon density of 0.001 , oxygen density of
0.001 , and iron density of 6.8 10 . The impurities
delay the time when the electron temperature starts to increase
before the ohmic heating turn-on time. The impurities also cause
the plasma to reach lower maximum electron temperature and
plasma current. These figures show that when an RF power of
455 kW with a duration of 2.0 s is applied, the maximumand

is reached before 1.5 s. The PF coil currents are designed to
begin a plasma current ramp down at1.4 s after the time .
Hence, the preionization after the time of 1.4 s plus is un-
necessary. Therefore, the upper limit of the calculation time is
set to 1.5 s in subsequent calculations with ms, and

Fig. 1. Temporal behaviors of plasma parameters with initial conditions:
P = 455 kW for duration of 2.0 s;T = 100 ms;R = 1:8 m; a = 0:5

m;N = 1:0� 10 m ;B = 2:0 mT; and no impurities.

Fig. 2. Temporal behaviors of plasma parameters with initial conditions:
P = 455 kW for duration of 2.0 s;T = 100 ms; R = 1:8
m; a = 0:5 m; N = 1:0 � 10 m ; B = 2:0 mT;
carbon density = 0:001 N ; oxygen density = 0:001 N ; and
iron density = 6:8� 10 N .

which is sufficient for finding the maximum electron tempera-
ture and the maximum plasma current.
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Fig. 3. Maximum plasma current and electron temperature as a function of
the ohmic heating delay time(T ) for an RF powerP = 455 kW with
durations of 0.5, 1.0, and 2.0 s.

B. Ohmic Heating Delay Time Effects

The following initial conditions are used: RF power
kW with durations of 0.5, 1.0, 2.0 s, initial neutral density

m , error field mT, and ohmic
heating delay time varied between 50 and 200 ms. The
maximum and are shown in Fig. 3. The maximum electron
temperature and the maximum plasma current decrease as the
ohmic heating delay time increases except for the case of 2.0-s
ECH duration. For a 2-s pulse length, the maximumand do
not depend on the since the ramp-down of the coil current
starts at 1.4 s after the beginning of the ramp-up. If the was
scanned longer than 600 ms, the maximumand would
decrease even in the case of RF pulse duration of 2 s.

C. Initial Neutral Density Effects

The following initial conditions are used: initial neutral den-
sity varied between 0.210 m and 1.2 10 m ; error
field mT; and ohmic heating delay time
ms (1) for kW with durations of 0.5, 1.0, 1.5 s, (2)
and kW– kW with a duration of 1.5 s. Figs. 4
and 5 show the maximum and maximum . As the pulse
length and the power increase, it is observed that the maximum
plasma current and electron temperature increase and the de-
pendence of and on the initial neutral density becomes
small. The maximum plasma current increases slightly but the
maximum electron temperature decreases as the initial neutral
density increases. In the case of different powers with a pulse
length of 1.5 s (Fig. 5), there exists a threshold power for a
given initial neutral density. The threshold power is 200 kW for

m . Fig. 5 shows that it is required to have a
higher threshold power as the initial neutral density increases.

D. Error Field Effects

The following initial conditions are used: initial neutral den-
sity m ; error field varied between 1.0
and 5.0 mT; and ohmic heating delay time ms (1)

Fig. 4. Maximum plasma current and electron temperature as a function of the
initial neutral density(N ) for an RF powerP = 455 kW with durations of
0.5, 1.0, and 1.5 s.

Fig. 5. Maximum plasma current and electron temperature as a function of the
initial neutral density(N ) for RF powers ofP = 100 kW–500 kW with a
duration of 1.5 s.

for kW with durations of 0.5, 1.0, 1.5 s; (2) and for
kW– kW with a duration of 1.5 s. Figs. 6 and 7

show the maximum and maximum . Similar to the initial
neutral density effects, it is seen that the maximum plasma cur-
rent and electron temperature increase as the pulse length and
the power increase. However, for an RF power more than 300
kW, the error fields do not influence the plasma current and elec-
tron temperature as shown in Figs. 6 and 7. In this case, there
also exists a threshold power for the error field of 4 mT. Fig. 7
shows that if more than 200 kW power is applied for a dura-
tion of 1.5 s, the plasma current and the electron temperature
are rather slowly varying.

E. Impurities Effects

We consider carbon, oxygen, and iron impurities. There are
little differences between the carbon and oxygen impurity ef-
fects. However, the iron impurity effect is larger than that of
carbon and oxygen. To calculate these effects, the following
initial conditions are used: initial neutral density

m ; error field mT;, and ohmic heating delay
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Fig. 6. Maximum plasma current and electron temperature as a function of the
error field(B ) for an RF powerP = 455 kW with durations of 0.5, 1.0,
and 1.5 s.

Fig. 7. Maximum plasma current and electron temperature as a function of the
error field(B ) for RF powers ofP = 100 kW–500 kW with a duration
of 1.5 s.

Fig. 8. Maximum plasma current and electron temperature as a function of the
fraction of the carbon impurity(F ) to the electron density for an RF power
P = 455 kW with durations of 0.5, 1.0, and 1.5 s.

Fig. 9. Maximum plasma current and electron temperature as a function of the
fraction of the carbon impurity(F ) to the electron density for RF powers of
P = 100 kW–500 kW with a duration of 1.5 s.

Fig. 10. Maximum plasma current and electron temperature as a function of
the fraction of the oxygen impurity(F ) to the electron density for an RF
powerP = 455 kW with durations of 0.5, 1.0, and 1.5 s.

time ms (1) for kW with durations of
0.5, 1.0, 1.5 s; (2) and for kW– kW with the
duration of 1.5 s. The varied fractions of impurities to the elec-
tron density are as follows: the carbon – %, the
oxygen – %, the iron – %.
Figs. 8 through 13 show the maximum and maximum .
The maximum plasma current and the maximum electron tem-
perature do not decrease dramatically for the carbon and oxygen
impurity densities up to 0.2% with an RF power of 455 kW. For
the carbon and oxygen impurities up to 0.2% of the electron
density, an RF power of 400 kW with a pulse length 1.5 s is ad-
equate to give plasma startup. However, when the iron impurity
is more than % of the electron density, an RF power
more than 455 kW need to be delivered with duration of 1.5 s.
However, for the KSTAR ECH system, the RF power is limited
to 455 kW because of the transmission loss.
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Fig. 11. Maximum plasma current and electron temperature as a function of
the fraction of the oxygen impurity(F ) to the electron density for RF powers
of P = 100 kW–500 kW with a duration of 1.5 s.

Fig. 12. Maximum plasma current and electron temperature as a function of
the fraction of the iron impurity(F ) to the electron density for an RF power
P = 455 kW with durations of 0.5, 1.0, and 1.5 s.

IV. CONCLUSION

In the first phase KSTAR operation, the current scenario
adopts the fast current ramping of seven pairs of poloidal
field coils, and there will be no auxiliary heating except the
ECH assist startup. In this paper, the preionization effects are
investigated using 0-D code. As the RF pulse length and its
power are increased, the dependence on the initial conditions,
such as the ohmic heating delay time, the initial neutral density,
the error field, and the impurity density is smaller for maximum
electron temperature and plasma current. With the gyrotron RF
power of 500 kW and 1.5 s, the preionization will minimize
the dependence on KSTAR initial conditions except for very
high impurity densities. In this work, we simplified the energy
deposition and the plasma volume through the 0-D approxima-
tion. The many parameter scannings on the preionization effect
are obtained easily using the 0-D code with small computing

Fig. 13. Maximum plasma current and electron temperature as a function of
the fraction of the iron impurity(F ) to the electron density for RF powers of
P = 100 kW–500 kW with a duration of 1.5 s.

time. Further study will be attempted in a one-dimensional
approximation.
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