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Study of the Effects of ECH Power and Pulse Length
on Preionization in the KSTAR Tokamak

Young-soon Bae, Won Namkunlylember, IEEEMoo Hyun Cho, and Alan C. England

Abstract—in this paper, we present the results of a study of did not consider the error field effects and poloidal field coil
the preionization effects for the Korean Superconducting Tokamak  cjrcuit equations.
Advanced Research (KSTAR) tokamak £, = 1.8 m,a = 0.5m, Because of the thick vacuum vessel wall, superconducting

k=2,6=0.8,Br =3.5T, I, =2MA, T,y = 300 s) that . . . . ..
is under construction by the Korea Basic Science Institute (KBSI). poloidal field coils, and the concomitant limited current ramp

The preionization will be given by the Electron Cyclotron Heating ~ rates, the generated loop voltage for breakdown may be too low
(ECH) System with an 84-GHz 500-kW gyrotron tube being made to provide breakdown reliably in the Korean superconducting
by Communications and Power Industries. The ECH preionization advanced research (KSTAR) tokamak [8]. As will be shown in
effects are investigated by a 0-dimensional code (TECHPGDthat following, the current buildup time is more than 1 s. Even-

includes the operational scenarios of KSTAR tokamak. The code . .
is now improved and advanced with carbon, oxygen, and iron im- tually, the plasma duration will be 300 s. For KSTAR tokamak,

purity effects, and with the self and mutual inductances of seven Preionization was studied earlier using the O-dimensional (0-D)
pairs of superconducting poloidal coils for the KSTAR tokamak.  code (TECHPOD) for many other initial conditions [9]-[11]
Index Terms—Electron cyclotron heating (ECH), gyrotron, considering the effects of t_he error field and impuritieg. qu-
Korean superconducting tokamak advanced research (KSTAR), €ver, KSTAR has seven pairs of superconducting poloidal field
poloidal, preionization. coils that are controlled independently, we made a more ad-
vanced code to which the additional circuit parameter are added
with circuit parameters of self inductances and mutual induc-
tances. These parameters were calculated by KBSI [12]. There-
LECTRON cyclotron heating (ECH) preionization hasore, in the present set of calculations, the effect of the additional
been successfully applied in a variety of tokamaks argircuit equations is examined.
is normally used to produce the plasma in contemporaryThis paper presents subsequent results of the preionization
stellarators. The general conclusion of these experiments is thiatulation using this advanced code that is quite adequate for
ECH was effective in producing a good plasma which wouldiescribing the physical process in KSTAR tokamak of major
(a) reduce the startup runaway electrons; (b) reduce the voltagdiusR, = 1.8 m and minor radiug = 0.5 m. The code is
required to start the plasma current; and (c) somewhat red@eB so that the elongatiom and triangularitys are not relevant
the Volt-s expenditure from the transformer needed to establisArameters. Similarly, the effect of variation of the initial minor
the plasma. The motivation for many of those experimentadiusa is not examined. The present version of the code allows
was the pioneering work of Perg al. [1]. While some of the the minor radius to grow but the radius is held constant for these
predictions of the theory were not born out by the experimentgudies. The variation of the minor radius would introduce an
nevertheless, the theory was important in showing the valggificiality into the results that is not justified by the 0-D char-
of preionization for voltage reduction. On the basis of thgcter of the code. Similarly, whether the energy deposition is at
experimental work by Kulchzet al.[2], a model was produced the ECR layer or the upper hybrid layer is not relevant to the re-
which was able to adequately describe the experiments giits. The complexity of the plasma expanding in minor radius
ISX-B. Later experimental work included the large tokamakan be the subject of future studies. Previously, it has also been
experiments in T-10 [3] and DIII-D [4]. The Modeling effortsfound [2] that the best results are obtained with a parallel index
of Fidone and Granata [5] showed that for a large tokamads refraction,n of 0.5 and 100%X-mode polarization. This
energy deposition would not occur at the electron cyclotramplies that the radiation incident on the plasma either from the
resonance heating (ECRH) layer. Maroli and Petrillo [6] addetgh-field side or from the low-field side is transformed by a
plasma radial growth and impurities. Lloyd al.[7] produced polarization rotator on the inside wall and reflected back to the
a more advanced model and added the effect of impurities, plisma asY-mode.

. INTRODUCTION

Manuscript received October 28, 2002; revised May 5, 2003. This work was Il. PREIONIZATION MODEL
supported by the Korea Basic Science Institute (KBSI) and by the Korea Atomic
Energy Research Institute (KAERI). The model of the preionization was first applied to the ISX-B
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equations of seven pairs of controlled PF coils and the effects
10-Dimensional Tokamak ECH Preionization code. of hydrogen ions and impurities. Except for the impurity effects
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and the additional circuit equations for the KSTAR tokamak, a TABLE |

detailed discussion of the other equations is found in the pre-SELF AND MUTUAL INDUCTANCES BETWEEN SEVEN PAIRS OF POLOIDAL
. . . . FIELD COILS AND PLASMA IN UNITS OF mH

vious paper [2]. The five main equations are as follows: 1) the

continuity equation; 2) the density conservation equation, i.t PF1 [PF2 [PF3 [PF4 [PF5 [PF6 [PF/ [ Plasma

the time variation of the neutral density is the same as that of { PEL__| 856 | 2655 | 596 | 528 1745 |7.13 |83 |0l
lectron densitv: 3) the elect densit tion: 4) { DE2__| 2655 [#498 [ 1256 [9.18 785 [ 58T | 647 | 0073

€lectron density, ) € electron energy aensity equation, ) PF5 596 [ 1256 | 1343 | 1038 |53 [296 [ 313 0037

ion energy density equation; and 5) the circuit equation. Hel PF4 529 | 918 | 1038 | 2693 | 10.96 | 448 | 452 | 0.031

we describe the circuit equation for the KSTAR tokamak, tk PFZ 7-‘112 ;g-‘" 5‘3 10.96 | 3274 | 3732 | 3121 | 0.135

: : o . TPH 7. 81 | 295 | 448 |37.31 ] 19936 | 99.1 | 0219
energy den§|ty equations, aqd the radllatlon.powe.r due to im} 55 83 T64 313 a5 51z 901 316450084
rities. Inclusion of hydrogen ions and impurities gives the tim pisma 10.11 10,073 1 0.037 [ 0.031 [ 0.135 [ 0219 [ 0284 | 0.003

variations of the energy densities as shown in the following:

40 = Pecn + Pon = oxiz Ue(Verr + Var + VE) is the hydrogen ion density arit} is the atomic number of the
dt . |4 impurity. The error field loss rate.,, is given as
- V(PEQU + Perem + Pirap) 1) §B\ (Vi I,
i Verr = | - 1-| -+ 5 fOI‘I, <IC
du; 1 ” Pox) - U @ B a I !
= — — —U,;v c
dt — VR T IEX E —0, forl,> L, 4)

whereV is the plasma volumé&r Ryra?), U, is the electron
energy density, and; is the ion energy density’gcy is the
ECH power coupled to the plasma giveniascy = Prr[l —

foexp(—n,) — fz exp(—n.)] [14], wherePgr is the RF power
delivered to the plasma, andn, are the dimensionless optica rate [16], and the energy loss raig is given by the empir-

depths for the ordlpary mode and extrao@nary mode, and ical law from “Alcator scaling” [17] when the plasma current
andf, are the fractional powers for the ordinary and extraordi-

d " i< the ohmic heat .~ IS greater than the critical current. When the plasma current is
nary mo e§- respec 'VeWQH IS Ine onmic heating pPOWErgiven, e than the critical current, the energy loss rate is scaled by
as simply/; R,,, wherel, is the plasma current ani, is the

: . NN P the ratio of the plasma current to the critical current. Both elec-
plasma resistancd’onrz is the ionization and radiation loss

due 1o ionizati d the radiati itted by th | trons and ions loss rates are assumed to obey Alcator scaling
ue to ionization and the radiation emitted by the energy level . o temperatures are low,

change processeBgqu is the power transferred from electrons The circuit equation for the seven pairs of the KSTAR PF
to ions by equipartition Pgren iS the bremsstrahlung pOWer . s is

loss due to the hydrogen and impurity ions, aRgx is the

charge exchange power loss between hydrogen atom and hy- 8 dI,,

drogen ions. The detail formulas Bfoxtz, Pequ, Perem, and - Z MnSW —IgR, = 0. )
Pcx are described in [7]Pir ap IS the fraction of the power lost n=1

from the line radiation through the interaction between electron§(5)' n = 1 — 7 are indexes for the seven pairs of PF coils and

and impurities [15]. All of the power expressions have analyti¢ _  is for the plasmaR, is the plasma resistance, anfl,s

forms except for the impurity line radiation power [0$5¢ap)  gre the mutual inductances between the PF coils and the plasma.
expressions that are obtained from fittings to the experimenggl,y, (5), we get the plasma current change over dt

data. The fitted formulas dPir ap are made from the Figs. 3(f),

4(f), and 5(f) of [15] for the carbon, oxygen, and iron impuri- _ 22_1 Mns%” - 3R,

ties, respectively. Carbon, oxygen, and iron are chosen because dIs = - Vi dt. (6)

they are the most probable impurities due to the expected com- 5

position of the first wall (special carbon composite on the staifthe data for the mutual inductances between the PF coils and the

where,Vr is the electron thermal velocity,is the minor radius

of the plasma, and. is the critical current]. = 4mwadéB/po.

The larger anticipated field errors may mean that there is no
Ipoloidal field null in the vacuum vessel. Thg, is the drift loss

less-steel vessel). The fitted formulas are of the form plasma and for the self inductance of the plasma are calculated
and listed in Table I. The rate of change of the currents in the
Prrap = 108 x N.N; x 10f [W/cm?) (3) PF coilsdl, /dt are assumed to be given by constant values

between the specified times as specified for the first phase of the
where,f = —33.93 + 4.888Q — 2.432Q? + 0.3697Q* for the KSTAR tokamak operation [18]. Equation (6) is the difference
carbon impurityf = —34.06+4.194Q —1.827Q%+0.2467Q*  between the externally applied loop voltage and the resistive
for the oxygen impurity, and = —30.23—0.152Q+0.073Q*—  voltage of the plasma. The externally applied loop voltage is
0.020Q* for the iron impurity withQ = log(7.). For these
fittings, the curve labeled0'*n.7; is chosen to see the distin- ! dr,
guishable impurity effects. The impurity ion density is assumed Ve=- Z M”SE @)
to be produced with a variable influx rate, i.&y = FyN., n=t
where [ is the fraction of the impurity to the electron densityand the resistive voltage is
Itis easily understood that the variable influx rate gives the con-
stantN; /Ny consideringNg = N. — >~ ; ZrN; whereNy Ve = IsR,. (8)
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The plasma resistance is P, =455kW, T, =2.05,T, =100ms,R =18m,a=05m
- 19 3 = - . . .
9By 1 o N,=10x10°m" B_=2.0mT, N, = 0.5 (Without impurity effects)
P ma? 201 o U’ """"""""""""""""
5 .
The plasma conductivity | is given as follows: 2, "‘E‘m ‘
o
w? E:‘ 8 v ~>‘-’r15201
g = - r (10) = 2 L n°
47r(l/ei + Veo) g \ .5; N
. .. . a =, 1E19 L
The electron—ion collision rate,; and the electron—atom colli- > ol _ Vv, z
sion ratev,,, are found in the NRL formulary [19]. P
0.0 05 1.0 15 20 1E18 0.0 0.5 1.0 1.5 20

lll. RESULTS

There are three kinds of input conditions—one for the m
crowave source, another for the KSTAR plasma, and the ott
for the poloidal field (PF) coils. The microwave source for the
KSTAR ECH system is a CPI gyrotron tube. The gyrotron tutf. i
can generate a maximum of 500 kW with pulse lengths up @ 4/
2.0 s. However, the power delivered to the plasma through == 10l :
waveguide and mirror-optics system is smallerthan 500 kwd  sof T —o0ls L
to various effects such as mode conversion, resistive losses, ° o -
tical losses, etc. From the KSTAR ECH system design, theto™ ~ ** ** [ 0 % 2 % % e
power lost is 9%, so that the delivered power to the KSTA~
plasma is approximately 455 kW. Since the power and the puﬁ&. 1. Temporal behaviors of plasma parameters with initial conditions:
length can be adjusted by the gyrotron power supply, the pow®f.. = 435 kW for duration of 2.0 sToy = 100 ms; Ry = 1.8 m;a = 0.5
and the pulse length are employed as the input parameter inth&o = 1.0 x 10 m=%; B.,, = 2.0 mT; and no impurities.
simulation. For the KSTAR plasma, we consider the following
input parameters: the major radiugy(= 1.8 m), the minor ra-
dius (@ = 0.5 m), the initial neutral densityN, ), the error field
(Berr), and the impurities such as carbon, oxygen, and iron. T
major radius and minor radius are fixed in all simulations. Tt
condition for the PF coils is already explained in the previot
section. The important parameter for the PF coils is the beg
ning time(7Tox) of the current sweep of the coils after the ECFH
power is turned on at tim& = 0. We callTpg as the ohmic
heating delay time.
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A. Temporal Behaviors of Plasma Parameters

The following initial conditions are use®gr = 455 kW for
duration of 2.0 sTog = 100 ms,Ry = 1.8 m,a = 0.5 m,
Ny = 1.0 x 10" m~3, B,y = 2.0 mT. Fig. 1 shows the tem-
poral behaviors of the electron temperat(7¢), the plasma
current(1,), the loop voltagéVy,), the resistive voltagéVg),
the electron densityN,), the electron energy density/.), %
and the PF coil currentdpr,) without considering any impu- £
rities. Fig. 2 shows the impurity effects on the output paranén 100
eters for the carbon density of 0.00{., oxygen density of ~ s
0.001N., and iron density of 6.& 10~° N,. The impurities ° 31T, =018
delay the time when the electron temperature starts to incre. o0 05 1o 15 20 00 05 10 15 20
before the ohmic heating turn-on time. The impurities also cau_ _ Time (scc) Time (sec)
the plasma to reach lower maximum electron temperature and , — o

. Fig. 2. Temporal behaviors of plasma parameters with initial conditions:

plasma current. These figures show that when an RF power,;éjfF — 435 KW for duration of 2.0 sTosy = 100 ms: Ry = 1.8
455 kW with a duration of 2.0 s is applied, the maximlipgnd m; « = 05 m; N, = 10 x 10 m =3 B, = 2.0 mT,
1, is reached before 1.5 s. The PF coil currents are designed®on deusity = 0.001 N.,oxygen density = 0.001 N and
begin a plasma current ramp down<at.4 s after the tim@ . o ety = 6.8 x 1077 e
Hence, the preionization after the time of 1.4 s gligsg; is un-
necessary. Therefore, the upper limit of the calculation timeghich is sufficient for finding the maximum electron tempera-
setto 1.5 s in subsequent calculations With; = 100 ms, and ture and the maximum plasma current.

8 & g 8

I, (cA)
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P, =455kW, T, =05-205,R,=18ma=05m, Py, =455kW,T,=05-155 T, =100 ms R,=1.8ma=05m,
N,=10x10"m’, B, =5.0 mT, N, = 0.5, and No impurities B, =5.0mT, N,= 0.5, and No impurities
450+
420 4
2.0 4204 420
400 208 158 1538
A e, S —y 4004 ./"_. » —b —— ——a
~
3 01 o™ g 3 o
. . — . = : 108
T : ERUE 1 TR
T § w0 5 350 =
= E § 380 4
o 8
: £l ) 2 z
B, 3204 S I .T.z“’-"' % wol TL=058 g T,,=05s
:5 é —. = . . o] TR
300 -
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Np_ 340
Zw \- 280 240
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2601 — T T T 320-— T T r ?
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Fig. 4. Maximum plasma current and electron temperature as a function of the
Fig. 3. Maximum plasma current and electron temperature as a function! ial neutral density Vo ) for an RF powet’rr = 455 kW with durations of

the ohmic heating delay imor) for an RF powetPrr = 455 kW with ~ 0->» 1.0, and 1.5's.
durations of 0.5, 1.0, and 2.0 s.

P =100-500kW, T,,= 155, T,,~ 100 ms, R, = 1.8 m,a = 0.5m,

B. Ohmic Heating Delay Timélo) Effects - ’-'=5'°mT”V"=°'5’:N°‘““’“"““

The following initial conditions are used: RF powBgr = o] S0Lw o sooww
455 kW with durations of 0.5, 1.0, 2.0 s, initial neutral density ] ~ T T p T e
Ny = 1.0 x 10'° m=3, error field B.,, = 5.0 mT, and ohmic o s Sl T T
heating delay time&loy varied between 50 and 200 ms. Thes ,.] oKW Em_ ——,
maximum?, and/, are shown in Fig. 3. The maximum electror E I A ST I € ] R Bouw
temperature and the maximum plasma current decrease as E 1501 E wl =
ohmic heating delay time increases except for the case of 2. E oo E 100
ECH duration. For a 2-s pulse length, the maxinilinrandl, do s w0
not depend on th&,y since the ramp-down of the coil current ] Y o] o\
starts at 1.4 s after the beginning of the ramp-up. Iffhg was 2 o e s To iz o2 o4 Os o8 1o 12

scanned longer than 600 ms, the maximiiand I, would N, x10” m) N,(x10° m?)

decrease even in the case of RF pulse duration of 2 s.
Fig.5. Maximum plasma current and electron temperature as a function of the

. . initial neutral density Ny ) for RF powers ofPrr = 100 KW-500 kW with a
C. Initial Neutral Density(N,) Effects duration of 1.5 s.

The following initial conditions are used: initial neutral den-
sity N varied between 0:210'” m=2 and 1.2<10'” m=3; error  for Pry = 455 kW with durations of 0.5, 1.0, 1.5 s; (2) and for
field B.,, = 5.0 mT, and ohmic heating delay tinf)i = 100 Prp = 100 kW-500 KW with a duration of 1.5 s. Figs. 6 and 7
ms (1) for Prr = 455 KW with durations of 0.5, 1.0, 1.5 s, (2) show the maximuni, and maximumy,,. Similar to the initial
and Prr = 100 kW-500 kW with a duration of 1.5 s. Figs. 4 neutral density effects, it is seen that the maximum plasma cur-
and 5 show the maximurii, and maximum/,,. As the pulse rent and electron temperature increase as the pulse length and
length and the power increase, it is observed that the maximttie power increase. However, for an RF power more than 300
plasma current and electron temperature increase and the ki&;the error fields do not influence the plasma current and elec-
pendence of}, and 7. on the initial neutral density becomestron temperature as shown in Figs. 6 and 7. In this case, there
small. The maximum plasma current increases slightly but thi&so exists a threshold power for the error field of 4 mT. Fig. 7
maximum electron temperature decreases as the initial neusiabws that if more than 200 kW power is applied for a dura-
density increases. In the case of different powers with a pulgen of 1.5 s, the plasma current and the electron temperature
length of 1.5 s (Fig. 5), there exists a threshold power forze rather slowly varying.
given initial neutral density. The threshold power is 200 kW for
No = 1.0 x 10! m~3, Fig. 5 shows that it is required to have &. Impurities Effects
higher threshold power as the initial neutral density increases. \we consider carbon, oxygen, and iron impurities. There are
, little differences between the carbon and oxygen impurity ef-
D. Error Field (B..,) Effects fects. However, the iron impurity effect is larger than that of

The following initial conditions are used: initial neutral den€arbon and oxygen. To calculate these effects, the following
sity Ny = 1.0 x 10'® m~3; error field B,,, varied between 1.0 initial conditions are used: initial neutral densitfy = 1.0 x
and 5.0 mT; and ohmic heating delay tifigg = 100 ms (1) 10'® m~3; error field B.,; = 5.0 mT;, and ohmic heating delay
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P, =455kW,T,,=05-155 7, =100ms, R,=18m,a=05m
N,=1.0x10" m®, N, =0.5, and No impurities
-
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Fig.6. Maximum plasma current and electron temperature as a function of

error field(B.,.) for an RF powerPrr = 455 kW with durations of 0.5, 1.0,

and 1.5 s.
P”= 100 - 500 kW, T”= 15s, Ta"= 100ms,R°= 1.8m,a=0.5m,
N,=10x10°m’, N, =0.5, and No impurities
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Fig. 7. Maximum plasma current and electron temperature as a function of-

error field(B.,.) for RF powers ofPry = 100 kW-500 kW with a duration

of 1.5s.
P, =455KW, T, =05-15sT, =100ms,R,=18ma=05m,
N,=10x10°m’, B, =5.0mT, N,=05,F,=002-02%
400 153 400
3804
1.0 360
360+ S
g ) g™
220 § w0
300 4 T,=05s g
— E 20
§ ) g
] m
g = \ g 300 4
240+ 280 4
220 4
2604
000 004 008 012 016 020 000 004 008 012 016 020
L)) F )

Fig. 8. Maximum plasma current and electron temperature as a function of
fraction of the carbon impurityFcr) to the electron density for an RF power

Prr = 455 KW with durations of 0.5, 1.0, and 1.5 s.
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P,,=100 - 500 kW, T,=15s87,=100ms,R =18ma=05m,
N,=1.0x10"m" B, =50mT, N,=05,F,=002-02%
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E‘lg. 9. Maximum plasma current and electron temperature as a function of the
fraction of the carbon impurityFc:) to the electron density for RF powers of
Pryr = 100 KW-500 kW with a duration of 1.5 s.

P,,=455kW, T”=0.5 -1.5s, T,=100 ms,R°= 1.8m,a=0.5m,
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Fig. 10. Maximum plasma current and electron temperature as a function of
the fraction of the oxygen impurityFo,) to the electron density for an RF
powerPrr = 455 kW with durations of 0.5, 1.0, and 1.5 s.

time Tog = 100 ms (1) for Prr = 455 kW with durations of
0.5, 1.0, 1.5 s; (2) and faPrr = 100 kW-500 kW with the
duration of 1.5 s. The varied fractions of impurities to the elec-
tron density are as follows: the carbéi; = 0.02-0.2%, the
oxygenFor = 0.02-0.2%, the ironF; = 0.001-0.006 95%.
Figs. 8 through 13 show the maximulfy and maximum/,.

The maximum plasma current and the maximum electron tem-
perature do not decrease dramatically for the carbon and oxygen
impurity densities up to 0.2% with an RF power of 455 kW. For
the carbon and oxygen impurities up to 0.2% of the electron
density, an RF power of 400 kW with a pulse length 1.5 s is ad-
equate to give plasma startup. However, when the iron impurity
is more thar6.5 x 10~3% of the electron density, an RF power
more than 455 kW need to be delivered with duration of 1.5 s.
‘q%wever, for the KSTAR ECH system, the RF power is limited
to 455 kW because of the transmission loss.
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P,,=100-500kW,T,,=155,7T,,=100ms,R,=1.8m a=05m,
N,=10x10"m’, B_=50mT,N,=05,F,=0.02-02%
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Fig. 11. Maximum plasma current and electron temperature as a functionFag. 13.
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P, =100 -500kW, T,,= 155, T, =100 ms, R,= 18 m,a=0.5m,
N,=10x10"m®, B_=50mT, N, =0.5,F, =0.001 - 0.00695 %
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Fig. 12. Maximum plasma current and electron temperature as a function off4]

the fraction of the iron impurity F1;) to the electron density for an RF power

Prr = 455 KW with durations of 0.5, 1.0, and 1.5 s.

IV. CONCLUSION

In the first phase KSTAR operation, the current scenario

adopts the fast current ramping of seven pairs of poloidal[7

field coils, and there will be no auxiliary heating except the

ECH assist startup. In this paper, the preionization effects are
investigated using 0-D code. As the RF pulse length and its

(5]

(6]

Prr = 100 kW-500 kW with a duration of 1.5 s.

time. Further study will be attempted in a one-dimensional
approximation.
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