Development of a 45-kV Pulse Transformer for a 1.5-MW Magnetron Application*

S. D. Jang, Y. G. Son, J. S. Oh
Pohang Accelerator Laboratory
Pohang University of Science and Technology (POSTECH)

Pohang University of Science and Technology (POSTECH)

San 31, Hyoja-dong, Pohang,
Kyungbuk 790-784, S. KOREA

* This work is partially supported by KBSI and KSTAR project by MOST.
Introduction

Microwave heating system of KSTAR consists of ECH and LHCD. ECH and LHCD offer the reliability of operation in the beginning of plasma formation and non-inductive current drive for long time steady state operation, respectively. LHCD demands C-band microwave system with a frequency of 5 GHz. A pulse generator with a power of 3.6 MW, 4 \(\mu s \), 200 pps is required to drive a high-power magnetron. The pulse transformer producing a pulse with a peak voltage of 45 kV is required to produce a 5-GHz microwave source in a 1.5-MW magnetron. We have designed the high power pulse transformer with 1:4 step-up turns ratio. The peak power handling capability is 3.6-MW (45 kV, 90 A at load side with 4 \(\mu s \) pulse width). In this paper, the results of the high power pulse transformer design and performance characteristics are presented.

* This work is partially supported by POSCON and KSTAR project by MOST.
Simplified Equivalent Circuit

Pulse Generator
- \(V_G \): Charging Voltage of Storage Capacitor
- \(S_G \): Thyristor Switch
- \(R_G \): Primary Impedance
- \(L_W \): Wiring Inductance

Pulse Transformer
- \(L_L \): Leakage Inductance
- \(R_E \): Core Resistance
- \(L_P \): Primary Inductance
- \(C_D \): Distributed Capacitance

Load
- \(C_{load} \): Load Capacitance
- \(R_L \): Load Impedance
Wave Shape Definitions

Overshoot: \(C_D, L_L, \gamma \)

Source Voltage

Droop: \(L_p, R_L, \tau_p \)
\[D = R_L \frac{\tau_w}{2 L_p} \]
\[L_p = 4\pi \mu_e N_p^2 A_e / L_m \text{ [nH]} \]

Load Voltage

Return backswing: \(C_D, L_L, \) Impedance mismatch

Rise time \(T_r : C_D, L_L \)
\[T_r = \sqrt{2\pi S(\sigma)} \sqrt{L_T C_T} \]

Fall time

Backswing: \(C_D, L_E, R_L, R_E \)
Normalized Rising Pulse Waveform
Design Parameters of the 1:4 Pulse Transformer

Given parameters (Requirements)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Designed</th>
</tr>
</thead>
<tbody>
<tr>
<td>peak load voltage (kV)</td>
<td>40 (negative)</td>
</tr>
<tr>
<td>Peak load current (A)</td>
<td>96 (max)</td>
</tr>
<tr>
<td>Load resistance (Ohms)</td>
<td>470 (Secondary)</td>
</tr>
<tr>
<td>Primary RMS current (A)</td>
<td>26.93 (max)</td>
</tr>
<tr>
<td>Secondary RMS current (A)</td>
<td>6.73 (max)</td>
</tr>
<tr>
<td>Pulse width (µs)</td>
<td>4</td>
</tr>
<tr>
<td>Turns ratio</td>
<td>1:4</td>
</tr>
<tr>
<td>Pulse repetition rate</td>
<td>200 pps</td>
</tr>
<tr>
<td>Load capacitance</td>
<td>31.4 pF</td>
</tr>
</tbody>
</table>

Designed parameters (Results)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Designed</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turns ratio</td>
<td>4</td>
<td>3.87</td>
</tr>
<tr>
<td>Primary turns</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>Leakage inductance (µH)</td>
<td>37</td>
<td>42.2</td>
</tr>
<tr>
<td>Distributed capacitance (pF)</td>
<td>12.8</td>
<td>38.7</td>
</tr>
<tr>
<td>primary inductance (mH)</td>
<td>21.6</td>
<td>19.85 (LCR)</td>
</tr>
<tr>
<td>Core material thickness (µm)</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>Magnetic flux swing (T)</td>
<td>0.68</td>
<td>-</td>
</tr>
<tr>
<td>Effective permeability</td>
<td>800</td>
<td>803</td>
</tr>
<tr>
<td>Gap length (µm)</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>Effective core cross-section (cm²)</td>
<td>66</td>
<td>-</td>
</tr>
<tr>
<td>Mean magnetic path length (cm)</td>
<td>50.3</td>
<td>-</td>
</tr>
<tr>
<td>Core weight (kg)</td>
<td>47</td>
<td>-</td>
</tr>
</tbody>
</table>
Design of Pulse Transformer(1:4) for 1.5 MW Magnetron

Primary winding:
- 10 turns with 2 parallel on each leg
- $x \Phi 1.6 \times 4.15$ Space ($l_c : 83$)

$A_o = 75 \text{ Cm}^2 (25 \times 3)$
$A_e = 66 \text{ Cm}^2 (22 \times 3)$
$L_m = 50.3 \text{ Cm}$
$\Delta 01 = 8, \Delta 12 = 10,$
$\Delta 23 = 10, \text{corona gap}=9$
$N_s : 40 \text{ turns}$
Corona ring : all secondary winding end point (dia. 5)

unit : mm

Secondary winding I:
- 40 turns $x \Phi 1.8 \times 2$ Space ($l_c : 78$), $78 + 15 + 7 = 100$

Secondary winding II:
- 10 turns $x \Phi 1.8$
- $x 3$ Space ($l_c : 27$)

Designed by S.D. Jang
October 30, 2003
Coil Geometry and Winding Configuration

Core (50x50.4)

Primary winding

Secondary winding

Isolated and bifilar winding (1:4)

\[a = 181 \]
\[b = 66 \]
\[l_c = 78 \]
\[\Delta 12 = 10 \]
Specification and Electrical Parameters of Pulse Transformer

Design Parameters of Modulator

<table>
<thead>
<tr>
<th>Item</th>
<th>Model calculated Value</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Inductance [mH]</td>
<td>1.271</td>
<td>1.268</td>
</tr>
<tr>
<td>Secondary Inductance [mH]</td>
<td>20.342</td>
<td>19.85</td>
</tr>
<tr>
<td>Leakage Inductance [µH]</td>
<td>79.3</td>
<td>42.2</td>
</tr>
<tr>
<td>Distributed Capacitance [pF]</td>
<td>44.2</td>
<td>38.7</td>
</tr>
</tbody>
</table>

Pulse Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Voltage [kV]</td>
<td>45</td>
</tr>
<tr>
<td>Peak Current [A]</td>
<td>96</td>
</tr>
<tr>
<td>Load Impedance [Ω]</td>
<td>470</td>
</tr>
<tr>
<td>HV Pulse Length [µs]</td>
<td>4</td>
</tr>
<tr>
<td>Pulse Energy [J]</td>
<td>17.3</td>
</tr>
<tr>
<td>Repetition Rate Max [Hz]</td>
<td>200</td>
</tr>
<tr>
<td>Step-up Ratio</td>
<td>4</td>
</tr>
<tr>
<td>PFN Charging Voltage [kV]</td>
<td>25</td>
</tr>
<tr>
<td>PFN Impedance [Ω]</td>
<td>29.37</td>
</tr>
<tr>
<td>PFN Section Cap [nF]</td>
<td>10</td>
</tr>
<tr>
<td>PFN Section Inductance [µH]</td>
<td>8.63</td>
</tr>
<tr>
<td>PFN Section Number</td>
<td>7</td>
</tr>
<tr>
<td>Charging Resistance [Ω]</td>
<td>100</td>
</tr>
<tr>
<td>Thyratron (CX1191D)</td>
<td>8 MW, 35 kV, 500 A,</td>
</tr>
<tr>
<td>Peak Voltage [kV]</td>
<td>45</td>
</tr>
<tr>
<td>Peak Current [A]</td>
<td>96</td>
</tr>
<tr>
<td>Load Impedance [Ω]</td>
<td>470</td>
</tr>
<tr>
<td>HV Pulse Length [µs]</td>
<td>4</td>
</tr>
<tr>
<td>Pulse Energy [J]</td>
<td>17.3</td>
</tr>
<tr>
<td>Repetition Rate Max [Hz]</td>
<td>200</td>
</tr>
<tr>
<td>Step-up Ratio</td>
<td>4</td>
</tr>
<tr>
<td>PFN Charging Voltage [kV]</td>
<td>25</td>
</tr>
<tr>
<td>PFN Impedance [Ω]</td>
<td>29.37</td>
</tr>
<tr>
<td>PFN Section Cap [nF]</td>
<td>10</td>
</tr>
<tr>
<td>PFN Section Inductance [µH]</td>
<td>8.63</td>
</tr>
<tr>
<td>PFN Section Number</td>
<td>7</td>
</tr>
<tr>
<td>Charging Resistance [Ω]</td>
<td>100</td>
</tr>
<tr>
<td>Thyratron (CX1191D)</td>
<td>8 MW, 35 kV, 500 A,</td>
</tr>
</tbody>
</table>
Parameters of Pulse Transformer

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total magnetic flux density swing [T]</td>
<td>0.68</td>
</tr>
<tr>
<td>Effective magnetic Permeability</td>
<td>800</td>
</tr>
<tr>
<td>Core Packing factor [%]</td>
<td>0.88</td>
</tr>
<tr>
<td>Magnetic Cross section Area [cm²]</td>
<td>66</td>
</tr>
<tr>
<td>Mean Magnetic Path Length [cm]</td>
<td>50.3</td>
</tr>
<tr>
<td>Distance between layers [cm]</td>
<td>1</td>
</tr>
<tr>
<td>Winding length [cm]</td>
<td>7.5</td>
</tr>
<tr>
<td>Mean circumference between layers [cm]</td>
<td>28.7</td>
</tr>
<tr>
<td>Primary Turn Number</td>
<td>10</td>
</tr>
<tr>
<td>Secondary Turn Number</td>
<td>40</td>
</tr>
</tbody>
</table>

\[
T_r = \frac{2\pi \sqrt{L_L \cdot C_D}}{4}
\]

\[
L_L = \frac{\mu_0 \Delta \cdot u \cdot N_s^2}{l_c}
\]

\[
C_D = \frac{\varepsilon_0 \varepsilon_r \cdot l_c}{\Delta} \left(\frac{n-1}{n} \right)^2
\]

\[
T_r = \frac{\pi}{2c} \sqrt{\varepsilon_r \cdot N_s \cdot u \cdot n-1}
\]

\[
\tau : \text{Pulse Width}
\]

\[
V_s : \text{Secondary Voltage}
\]
Circuit Diagram of Modulator

Pulse Modulator
- Peak Power: 3.6 MW
- Charging Voltage: 22.5 kV
- PFN Output Voltage: 11.25 kV
- PFN Output Current: 382 A
- HV Pulse Width (70% Voltage): 4.0 µs
- Repetition Rate: 200 pps

C-Band 1.5MW Magnetron
- Frequency: 5100 MHz
- Output Power: 1.5 MW
- Repetition Rate: 200 pps
- Efficiency: 52%
- Beam Voltage: 39 kV
- Beam Current: 83 A
- RF Pulse Width: 4.0 µs

Dong-A 403
- Output Voltage: 25 kV
- Charging Rate:
 - Peak: 5 kJ/s
 - Average: 4.0 kJ/s

High Voltage Switched Mode Power Supply
- Dong-A 403
- Output Voltage: 25 kV
- Charging Rate:
 - Peak: 5 kJ/s
 - Average: 4.0 kJ/s

Magnetron Pulse Transformer
- Tank Frequency: 5100 MHz
- Output Power: 1.5 MW
- Repetition Rate: 200 pps
- Efficiency: 52%
- Beam Voltage: 39 kV
- Beam Current: 83 A
- RF Pulse Width: 4.0 µs
Air cooled magnetron
- SFD369
- Frequency: 4.9 – 5.1GHz
- Peak power output: 1.5MW
- Duty Cycle: 0.001 (1 kHz repetition)
- Peak Anode Voltage Max: 40.5 kV
- Peak Anode Current Max: 90 Amps
- Pulse Width: 0.4~1.4 µs

WR187 w/g components
- Straight waveguide
- E-bend
- H-bend
- Dual directional coupler
- 4-port circulator

Interactive Image Regions:
- Interlock signals
 - Reflection power > 50%
 - Arc signal (in waveguide)
 - SF6 gas pressure < 30 psig
 - Magnetron cooling fan off

Control Unit
- PLC / pulse gen.

Inverter Powersupply

Thyratron Switch / PFN

Pulse Transformer

19” rack

PFN Pulse Modulator
(Max 45 kV, 96 A, 4 µs)

Trigger pulse (Internal & External DG535)
Interlock signals (Contact Closures)
RS232 comm port (for remote control)

5.0-GHz magnetron
Dry dummy load
Dual directional coupler
E-bend or H-bend
Optical cable
4-port circulator
Dry Dummy Load
Arc detector
Pressure Gauge / Valve
FAN
Heater
DC 5 V
28 A

WR187 w/g components:
- Straight waveguide
- E-bend
- H-bend
- Dual directional coupler
- 4-port circulator

SF6

SFD369
- Frequency: 4.9 – 5.1GHz
- Peak power output: 1.5MW
- Duty Cycle: 0.001 (1 kHz repetition)
- Peak Anode Voltage Max: 40.5 kV
- Peak Anode Current Max: 90 Amps
- Pulse Width: 0.4~1.4 µs

KAPRA 2004, Cheorwon Cityhall, Gangwon (July 9-10)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anode Voltage (kV)</td>
<td>39</td>
</tr>
<tr>
<td>Anode Current (A)</td>
<td>83</td>
</tr>
<tr>
<td>Magnetron Impedance (Ω)</td>
<td>470</td>
</tr>
<tr>
<td>Pulse Width (µs)</td>
<td>4</td>
</tr>
<tr>
<td>Average Output Power (kW)</td>
<td>1.65</td>
</tr>
<tr>
<td>Peak Output Power (MW)</td>
<td>1.68</td>
</tr>
<tr>
<td>Duty</td>
<td>0.0008</td>
</tr>
<tr>
<td>Heater V, I (V, A)</td>
<td>5, 28</td>
</tr>
<tr>
<td>Frequency (MHz)</td>
<td>4900-5100</td>
</tr>
<tr>
<td>Efficiency (%)</td>
<td>52</td>
</tr>
</tbody>
</table>
Photographs for LHCD Test System

PFN & HV Box

Modulator Test Setup

KAPRA 2004, Cheorwon Cityhall, Gangwon (July 9-10)
Test and Simulation Results

- Time
- \(5.008\text{ms}\)
- \(5.010\text{ms}\)
- \(5.012\text{ms}\)
- \(5.014\text{ms}\)
- \(5.016\text{ms}\)
- \(5.018\text{ms}\)

- \(-100\text{A}\)
- \(-50\text{A}\)
- \(0\text{A}\)
- \(140\text{A}\)

- \(-45\text{kV}\)
- \(-97\text{A}\)

- Rise time: 0.4 \(\mu\)s
- Flatness: 1.8%
- Flattop Pulse width: 2.8 \(\mu\)s
Summary & Future Plan

• Summary

1. Equivalent circuit analysis of the pulse transformer.
2. Normalized rising waveform as function of the damping factor.
3. Design of the 1:4 pulse transformer for a microwave tube.
4. Establishment of the general design procedure, equation for high-power pulse transformer.
5. Waveform analysis for simulation circuit of the pulse system.
6. Measurement of equivalent circuit parameters for transformer

• Future plan

1. Measurement of pulse characteristics according to specification.
2. HV performance test by using a 5 GHz, 1.6 MW magnetron load for a LHCD system.
3. Optimum design and fabrication for high efficiency.