Characteristics of Ar Z-Pinch Plasmas Generated by Different Pre-pulses*

이 동협, 나 채현, 손 윤규¹, 고 경보, 김 동수², 조 무현, 남궁 원 포항공과대학교 물리학과, ¹⁾포항가속기연구소, ²⁾ VMT

* Work partly supported by Small and Medium Business Administration and POSTECH Physics BK21.

Abstract

An extreme ultraviolet (EUV) source of ~13.5 nm is required for lithography under 40 nm line definition in the near future. For EUV lithography sources, a discharge-produced plasma (DPP) which we adopted is widely being investigated for much higher-power compared to laser-produced plasmas (LPP). It is known that the pre-pulse in DPP system leads the ignition of a uniform discharge in the main discharge gap, repeatability of EUV energy and increased conversion efficiency. Thus, our experiments were focused on finding influence of pre-pulses on Z-Pinch plasmas by varying the delay time between pre and main pulses and dI/dt of pre-pulses. In this paper, we present the effect of different prepulses on the main discharge current.

Introduction

❖ Modern lithography using KrF or ArF almost reaches the lower limit of 65nm dimensions. →
 An extreme ultraviolet(EUV) source of ~13.5nm is required for lithography under 50nm line definition.

***** There are two leading technologies of producing EUV light.

³² nm!

ran produced placema(DDD)	
Bet power at the intermediate focus	115W in 2 % BW
Repetition rate	·7 – 10 kHz
Energy stability	± 0.3 %, in 3 σ over 50 pulses
Lifetime	30,000 hours of operation
Maximum etendue of source output	· 3.3 mm ² sr
Maximum solid angle input to illuminator	0.03 – 0.2 sr
Spectral purity: 10 – 40 nm 40 – 130 nm 130 – 400 nm - 400 nm	TBD (To be determined) TBD · 3 - 7 % TBD
Pulse-to-pulse positional stability	10 % of source size
Angular distribution of power symmetrical	TBD (must be axially with respect to the optical axis)
Rotational symmetry of power	TBD
ong term power drift	 ± 2% (optical monitor module)
Stability of repetition rate	• ± 0.1 % (long term)
Spatial distribution of power	TBD
Vacuum before intermediate focus	TBD
Source emission volume	$\Phi \approx 1.3 \text{ x } 1.5 \text{ mm}^2$

Z-pinch Effect

Electrode Configuration

Discharge Circuit V C₂=39 nF $R_{\rm P}=10 \ \rm k\Omega$ $R_{D}=5 \Omega$ **Spark Gap** L_s=300 nH Switch $R_L=20 \text{ k\Omega}$ nF КŊ C₁=42 Thyristor $\mathbf{D}_{\mathbf{p}}$ Photodiode Ň 25 kV Plasma $\sim 1 \mu H$ CT Chamber E/O 200 Ω **DG535** negative H. V. **Pulse Generator** В

Output Waveforms (charging voltage: 21 kV)

Pre and Main Pulse Waveforms

Effect of Delay Time on Main Discharge Current (T_D: 10 ~ 400

Effect of Delay Time on Main Discharge Current (T_D : 1 ~ 9 µs)

Summary and Future Work

• Summary

- The discharge current of amplitude of 4 kA and pulse width of 400 ns was obtained at the charging voltage of 25 kV.

- Main Current waveform is hardly relative with delay time.

- Light intensity from Z-pinch plasmas varies with delay time. In our experiment, pre-pulses of delay time from 50 μs to 200 μs produce stronger light intensity than the others.

- Main pulse when pre-pulse still exits emits very unstable light. It is seen that the pulses interact with each other so that light intensity is not stable.

• Future work

- Increase of reproducibility
- Measurement of main pulse and light intensity by varying amplitude of pre-pulse

- Design of cooling system to prevent debris and erosion for high repetition rate

- Construction of EUV discharge system

