Study on Material Discrimination by Atomic Number Using Dual Energy γ-Rays

Y. M. Gil, Y. S. Lee1, H. S. Lee1, M. H. Cho, and W. Namgung

POSTECH, 1PAL
Abstract

The aim of this study is to demonstrate the practical value of radioscopic differentiation materials. The proposed method for achieving singling out and identifying four basic groups of materials according to an atomic number is complex. Atomic numbers are identified using high- and low-energy profiles obtained through the irradiation of materials. The experiment is done using gamma-ray beams with 1.25 MeV/0.662 MeV dual energies and by using NaI(Tl) scintillation detector. In addition to simulation under the same condition for the experiment, the MCNP simulation is done using bremsstrahlung X-rays from 9 MeV/4 MeV dual electron beam.
Discrimination Method

- \(t \): thickness of material [cm]
- \(\mu \): total linear attenuation coefficient [cm\(^{-1}\)]
 \[\mu = \tau + \sigma + \kappa \]
 - \(\tau \): contribution of photoelectric effect
 - \(\sigma \): contribution of Compton effect
 - \(\kappa \): contribution of pair production
- Total Attenuation = \(f (Z_m, \rho_m, t_m, E_{\gamma-ray}) \)

\[
l = I_0 e^{-\mu t}
\]

\[
\mu t = \ln \left(\frac{I_0}{I} \right)
\]

Discrimination is not possible!

\[
\frac{\mu}{\mu'} = \frac{\ln \left(\frac{I_0}{I} \right)}{\ln \left(\frac{I_0'}{I'} \right)} = R (E_1, E_2, t, Z)
\]
Experimental Setup

Gamma-ray Source

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Activity</th>
<th>Photon energy(keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs-137</td>
<td>36.445 kBq (Dec.1.1994)</td>
<td>662 (85%)</td>
</tr>
<tr>
<td>Co-60</td>
<td>34.2 kBq (Dec.1.1997)</td>
<td>1173.2(99.9%) 1332.5(99.9%)</td>
</tr>
</tbody>
</table>

Nal(Tl) Scintillation Detector

<table>
<thead>
<tr>
<th>Model</th>
<th>Crystal Size (mm (in.))</th>
<th>Resolution*</th>
</tr>
</thead>
<tbody>
<tr>
<td>802–3×3</td>
<td>76×76 (3×3)</td>
<td>7.5%</td>
</tr>
</tbody>
</table>

*Resolution is specified at the 662 keV peak of 137Cs.
Ratio of Attenuation Coefficient, \(\frac{\mu_{\text{Cs-137}}}{\mu_{\text{Co-60}}} \)

for barriers: Polyethylene, Al, Fe, and Pb

\[I_0 : \text{Area of channel 615~1000 of “no barrier”} \]
\[I : \text{Area of channel 615~1000 of each barrier} \]
\[I_0' : \text{Area of channel 1001~1500 of “no barrier”} \]
\[I' : \text{Area of channel 1001~1500 of each barrier} \]

MCNP simulation for monochromatic beam geometry

Experimental data using dual source
Simulation for Dual Energy Using 9 / 4 MeV X-ray

W+Au Target
(0.25, 0.1cm)

Accelerator

Pb-Collimator

Material

Detector

MCNP Simulation Conditions

<table>
<thead>
<tr>
<th>Spot size</th>
<th>Dia. 2 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>9 MeV, 4 MeV (Monochrome)</td>
</tr>
</tbody>
</table>

Result of *MCNP simulation* of Bremsstrahlung Spectrum after electron beam passes through target.

- Photon Yield $\frac{1}{(\text{incident electron})}$
- Photon Energy [MeV]

Graph showing the photon yield and energy distribution for 9 MeV and 4 MeV electron beams.
Simulation of Dual Energy Method & Back Scattering

Unit: cm

- Source
- Detector

Material

- Pb
- Pb
- 0.4
- 10
- 20
- 35
- 30
- 70

- 90°
- 75°
- 60°
- 45°
- 30°
- 15°
- 0°
Results of Dual Energy Method & Back Scattering

- More effective for the discrimination of materials compared to the Single Energy Method
- Especially effective for the discrimination of Low Z materials

Combine Dual Energy Method & Back Scattering Method
Geometry for Polar Plot of Back Scattering Effect

Unit: cm

Source

Detector

Material

[Diagram showing the setup with angles 0°, 15°, 30°, 45°, 60°, 75°, and 90°, and various materials and detectors indicated]
Polar Plot of Discrimination Effect of Back Scattering

- Detector position
- Discrimination effect

- Wa40
- Al40
- Fe40
- Pb40

- C
- Water
- Na
- Al
- Fe
- Ag
- W
- Pb
Discrimination Effect of Back Scattering

Discrimination Effect

Detector position

Atomic number

<table>
<thead>
<tr>
<th>Atomic number</th>
<th>C</th>
<th>Water</th>
<th>Na</th>
<th>Al</th>
<th>Fe</th>
<th>Ag</th>
<th>W</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>■</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>▲</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td>▼</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>▲</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>▲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>▲</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>▲</td>
</tr>
</tbody>
</table>
Conclusion

- The aim of this research is to demonstrate the practical value of radioscopic differentiation materials.
- We have measured with the Dual Energy (Cs-137 : 0.662 MeV, Co-60 : 1.173, 1.332 MeV) to estimate the ratio of attenuation coefficients for the materials.
- The measured data in this study are in good agreement with the MCNP simulation.
- We have extended the energy level to 9 MeV / 4 MeV Bremsstrahlung in order to discover the optimal energy for Dual Energy Method.
- The Dual Energy Method with 9 MeV / 4 MeV is more effective for the discrimination of materials according to their atomic number compared to the Single Energy Method.
- Back Scattering Method is especially effective for the discrimination of low Z material.
- It is more effective for the discrimination of materials to combine the Dual Energy Method and Back Scattering Method.