Development of a Multi-Purpose, Multi-Frequency Gyrotron for DEMO at KIT

Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany

aInstitute for Pulsed Power and Microwave Technology (IHM)
bInstitute of High Frequency Techniques and Electronics (IHE)

E-mail: manfred.thumm@kit.edu
Overview

- Requirements for DEMO Gyrotrons
- Targets of DEMO Gyrotron Development at KIT
 - 1.5 - 2 MW, CW Coaxial-Cavity Gyrotron
 - Multi-Purpose, Multi-Frequency Gyrotron (136 – 272 GHz, $\Delta f = 33.8$ GHz)
 - Step-Frequency Tuning (227 – 248 GHz, $\Delta f = 2$ GHz)
 - 1 MW, CW Conventional-Cavity Gyrotron
 - Multi-Purpose, Multi-Frequency Gyrotron (136 – 270 GHz, $\Delta f = 33.0$ GHz)
- Summary and Acknowledgments
Requirements for DEMO Gyrotrons (I)

Current design studies on Electron Cyclotron Heating & Current Drive (ECH&CD) systems for the demonstration fusion power tokamak plant DEMO demand gyrotron frequencies of above 200 GHz for efficient CD and a total gyrotron efficiency above 60 % to achieve a sufficient fusion gain factor. (E. Poli, et al. Nuclear Fusion, 53, 013011 (10pp) (2013))

Required gyrotron frequency depends on the Aspect Ratio A of DEMO and on the relevance of CD in plasma operation.

Indicative frequencies for different Aspect Ratio A

<table>
<thead>
<tr>
<th>$A = R/a$</th>
<th>2.6</th>
<th>3.1</th>
<th>3.6</th>
<th>4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_t [T]$</td>
<td>4.2</td>
<td>5.8</td>
<td>7.0</td>
<td>7.6</td>
</tr>
<tr>
<td>f_{Heating}</td>
<td>118</td>
<td>161</td>
<td>197</td>
<td>213</td>
</tr>
<tr>
<td>$f_{\text{Current Drive}}$</td>
<td>144</td>
<td>197</td>
<td>240</td>
<td>280</td>
</tr>
<tr>
<td>γ [Am$^{-2}$/MW] (Top Launch)</td>
<td>0.16</td>
<td>0.32</td>
<td>0.36</td>
<td>0.45</td>
</tr>
</tbody>
</table>
Requirements for DEMO Gyrotrons (II)

Gyrotron flexibility could compensate the rigidity of a DEMO reactor:

- **Multiple Frequencies**: distance between two frequency \(\sim 34 \) GHz. Selection between pulses. 3-4 frequencies possible. Single disk gyrotron window sufficient.

- **Step Tunability**: 2-3 GHz between step: max. span 10 GHz for NTM stabilization. During the pulse (but not very fast). Broadband gyrotron window required.

- **Output mm-Wave Beam Quality**: 95% demonstrated for ITER gyrotrons

- **Reliability**: ITER gyrotron (GYCOM) demonstrated 95% > 98% could be reasonable for DEMO (demonstrated for 140 GHz W7-X gyrotron (Thales))

- **Unit Power**: 1 – 2 MW (coaxial-cavity/backup: conventional cavity), Efficiency: up to 60%

- **Requirements for high gyrotron efficiency**: Excellent quality of electron beam Excellent alignment of tube components and magnetic field Multi-stage depressed collector
Towards DEMO: 240 GHz Coaxial-Cavity Gyrotron Development

- **Targets of KIT development**
 - $f = 230 - 240$ GHz, $P = 1.5 - 2$ MW, $\eta > 60\%$
 - Frequency step-tunability ($\Delta f \approx 2$ GHz, $+/-.10$ GHz tunability)

- **“Classic” technical limitations**
 - Emitter radius ≤ 65 mm
 - Electric field at emitter surface ≤ 7 kV/mm
 - Emitter current density ≤ 4 A/cm2
 - Magnetic compression $B_0/B_{gun} \leq 40$
 - Spread of electron guiding centers $\leq \lambda/5$
 - Ohmic loading on resonator wall ≤ 2 kW/cm2

- **Results in**

 \Rightarrow Beam radius $R_b \geq 10$ mm, cavity radius $R_{cav} \geq 31$ mm $\Rightarrow \chi \approx 150$
Typical Spectra for Very-High-Order Modes

Spectra around the modes $\text{TE}_{47,31}$ and $\text{TE}_{51,27}$ from $f_0 - 12 \text{ GHz}$ to $f_0 + 15 \text{ GHz}$

$R_b = 9.60 \text{ mm}$

$R_{cav} = 31.78 \text{ mm}$

$R_b = 10.93 \text{ mm}$
Ohmic Losses at High Frequencies

- Ohmic loading on cavity surface

\[w_\Omega \sim P \cdot \frac{f^{5/2}}{\sqrt{\sigma}} \cdot \frac{1}{\chi^2} \cdot \frac{1}{1 - C_c^2} \], \quad C_c = \frac{R_c}{R_{cav}}

- \text{TE}_{49,29} (\chi = 158): \text{Ohmic loading would allow 2 MW!}

- Power limitations:
 - frequency
 - emitter radius / bore-hole
 - electron gun design
 - emitter current density
Towards DEMO: Fundamental Studies of a 240 GHz Coaxial-Cavity Gyrotron

\[p/m \sim 0.57 \quad (R_c/R_{cav} \sim 0.31) \]

\[X_{m,p} = 140 \ldots 160 \]

- \(m = 1 \ldots 100; \ p = 1 \ldots 60 \)

1. \(\text{TE}_{28,16} \ 140/1.5 \) [Piosczyk et al. 1997]
2. \(\text{TE}_{31,17} \ 165/1.5 \) [Piosczyk et al. 1999]
3. \(\text{TE}_{34,19} \ 170/1.5 \) [Rześnicki et al. 2007]
4. \(\text{TE}_{52,31} \ 170/4.0 \) [Beringer et al. 2010, Design]

(too) large caustic radius
(conventional gyrotrons)

very small caustic radius

\(\text{TE}_{(m-3),p+1} \)

\(\text{TE}_{(m-2),p+1} \)
Optimum Features of Multi-Frequency Gyrotrons

Cavity Radius: \(R_{cav} \)

Bessel Zero of Cavity Mode \(TE_{m,p} \): \(X_{m,p} \)

Caustic Radius of Cavity Mode \(TE_{m,p} \) : \(R_c = (m/X_{m,p})R_{cav} = C_c R_{cav} \)

Relative Caustic Radius: \(C_c = R_c/R_{cav} = (m/X_{m,p}) \)

Electron Beam Radius: \(R_b \approx 1.05 R_c \)

Radius of Q.O. Launcher: \(R_L \)

Brillouin Angle: \(\theta_B = \arccos[1-(R_{cav}/R_L)^2]^{1/2} \)

Azimuthal Spread Angle: \(2\phi = 2\arccos(C_c) \)

Length of Straight Launcher Cut: \(L = 2\pi R_L \sin\phi/(\phi \tan \theta_B) \)

If \(m/X_{m,p} \) of the modes is the same, \(R_b \), \(2\phi \) and \(L \) are also the same and the mm-wave output beam hits the same point at the tube gyrotron output window!
Multi-Purpose Multi-Frequency Coaxial-Cavity Gyrotron for DEMO with Different $A=R/a$

CVD-Diamond Window: $t = 1.854$ mm, - 20 dB Reflection Bandwidth = 2.2 GHz

<table>
<thead>
<tr>
<th>Frequency [GHz]</th>
<th>Application</th>
<th>Cavity Mode</th>
<th>Bessel Zero</th>
<th>Relative Caustic Radius C_c</th>
<th>Normalized Window Thickness [λ]</th>
<th>Window Center Frequency [GHz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>136.3</td>
<td>CD, $A=2.6$</td>
<td>$TE_{28,17}$</td>
<td>90.6697</td>
<td>0.3088</td>
<td>4/2</td>
<td>135.9</td>
</tr>
<tr>
<td>170.0</td>
<td>H, $A=3.1$</td>
<td>$TE_{35,21}$</td>
<td>113.1329</td>
<td>0.3094</td>
<td>5/2</td>
<td>169.8</td>
</tr>
<tr>
<td>203.8</td>
<td>H, $A=3.6$</td>
<td>$TE_{42,25}$</td>
<td>135.5957</td>
<td>0.3097</td>
<td>6/2</td>
<td>203.8</td>
</tr>
<tr>
<td>237.5</td>
<td>H, $A=4.0$</td>
<td>$TE_{49,29}$</td>
<td>158.0584</td>
<td>0.3100</td>
<td>7/2</td>
<td>237.8</td>
</tr>
<tr>
<td>271.3</td>
<td>CD, $A=4.0$</td>
<td>$TE_{56,33}$</td>
<td>180.5209</td>
<td>0.3102</td>
<td>8/2</td>
<td>271.7</td>
</tr>
</tbody>
</table>

Max. deviation of C_c is 0.27%, therefore max. horizontal output beam shift of only $\approx 50 \mu m$
Step-Frequency Tunable Coaxial-Cavity Gyrotron

226.6 GHz < 237.5 GHz < 248.4 GHz

<table>
<thead>
<tr>
<th>Freq. [GHz]</th>
<th>226.6</th>
<th>228.6</th>
<th>230.6</th>
<th>232.5</th>
<th>233.5</th>
<th>235.5</th>
<th>237.5</th>
<th>239.5</th>
<th>241.5</th>
<th>242.5</th>
<th>244.5</th>
<th>246.4</th>
<th>248.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>∆f [GHz]</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Cavity Mode</td>
<td>TE\textsubscript{46,28}</td>
<td>TE\textsubscript{47,28}</td>
<td>TE\textsubscript{48,28}</td>
<td>TE\textsubscript{49,28}</td>
<td>TE\textsubscript{47,29}</td>
<td>TE\textsubscript{48,29}</td>
<td>TE\textsubscript{49,29}</td>
<td>TE\textsubscript{50,29}</td>
<td>TE\textsubscript{51,29}</td>
<td>TE\textsubscript{49,30}</td>
<td>TE\textsubscript{50,30}</td>
<td>TE\textsubscript{51,30}</td>
<td>TE\textsubscript{52,30}</td>
</tr>
<tr>
<td>Rel. Caust Rad. C_c</td>
<td>0.305</td>
<td>0.309</td>
<td>0.313</td>
<td>0.317</td>
<td>0.302</td>
<td>0.306</td>
<td>0.310</td>
<td>0.314</td>
<td>0.317</td>
<td>0.304</td>
<td>0.307</td>
<td>0.311</td>
<td>0.315</td>
</tr>
</tbody>
</table>

\[f_0 - 11 \text{ GHz} \quad f_0 \quad f_0 + 11 \text{ GHz} \]

Max. deviation of C_c is 2.8 %, therefore horizontal output beam shift of max. $\approx 2 \text{ mm}$
TE\textsubscript{49,29}-Mode Coaxial Cavity

Preliminary cavity design for a coaxial gyrotron operating in the TE\textsubscript{49,29} mode. Outer wall is shown in blue (upper edge), the tapered coaxial insert in red (lower edge) and the electron beam in brown.

\begin{align*}
\text{frequency} & \quad = \text{237.5 GHz} \\
R_{\text{cav}} & \quad = 31.78 \text{ mm (loading: 2.0 kW/cm}^2) \\
R_{\text{coax}} & \quad = 8.55 \text{ mm (loading: 0.2 kW/cm}^2) \\
\text{n} & \quad = 91 \text{ longitudinal corrugations (0.3/0.3 mm)} \\
Q_D & \quad \approx 2700 \quad (L_{\text{cyl}} = 15 \text{ mm}) \\
R_{\text{beam}} & \quad = 10.24 \text{ mm}
\end{align*}
Startup Scenario for the $\text{TE}_{49,29}$ Mode

> 2 MW output power

$\eta_{el} = 34 \%$ with margins

Initial operating point:

9.58 T, 85.6 keV, 69.3 A,

velocity ratio $\alpha = 1.22$

Assumptions

- 16 % spread in velocity ratio
- infinitely thin beam
- axial B-field not tapered
First Magnet Design

Difficulty: 10 Tesla at Ø 270 mm warm bore-hole!

- **9 Main Coils**
- **Gun Coil** (subject to discussion)

Coil Currents: ~ 150 A

(ARIADNE)
Coaxial Magnetron Injection Gun (MIG)

- Triode-Type MIG
- Emitter radius: 65 mm
- Emitter width: 4.3 mm
- Laminar beam (at boundary to nonlaminar)
- Velocity ratio (α) spread: 3.1 % (Emitter roughness not yet considered)
Multi-Frequency Conventional Cylindrical-Cavity Gyrotron (JAEA Mode Series)

CVD-Diamond Window: $t = 1.861 \text{ mm}$, - 20 dB Reflection Bandwidth = 2.2 GHz

<table>
<thead>
<tr>
<th>Frequency [GHz]</th>
<th>Application</th>
<th>Cavity Mode</th>
<th>Bessel Zero Relative Caustic Radius C_c</th>
<th>Normalized Window Thickness [λ]</th>
<th>Window Center Frequency [GHz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>136.9</td>
<td>CD, A=2.6</td>
<td>$\text{TE}_{25,9}$</td>
<td>59.8813 0.4175</td>
<td>4/2</td>
<td>135.4</td>
</tr>
<tr>
<td>170.0</td>
<td>W7-X UG</td>
<td>$\text{TE}_{31,11}$</td>
<td>74.3257 0.4171</td>
<td>5/2</td>
<td>169.2</td>
</tr>
<tr>
<td>203.0</td>
<td>H, A=3.1</td>
<td>$\text{TE}_{37,13}$</td>
<td>88.7696 0.4168</td>
<td>6/2</td>
<td>203.0</td>
</tr>
<tr>
<td>236.1</td>
<td>H, A=3.6</td>
<td>$\text{TE}_{43,15}$</td>
<td>103.2132 0.4166</td>
<td>7/2</td>
<td>236.8</td>
</tr>
<tr>
<td>269.1</td>
<td>CD, A=4.0</td>
<td>$\text{TE}_{49,17}$</td>
<td>117.6566 0.4165</td>
<td>8/2</td>
<td>270.6</td>
</tr>
</tbody>
</table>

Max. deviation of C_c is 0.22%, therefor max. horizontal output beam shift of only $\approx 50 \mu\text{m}$
Cold Cavity Design

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (GHz)</td>
<td>170 / 203 / 236 / 269</td>
</tr>
<tr>
<td>Cavity Mode</td>
<td>$TE_{31,11}, TE_{37,13}, TE_{43,15}, TE_{49,17}$</td>
</tr>
<tr>
<td>Cavity Radius R_0 (mm)</td>
<td>20.88</td>
</tr>
<tr>
<td>Beam Radius R_e (mm)</td>
<td>9.13 / 9.10 / 9.06 / 9.04</td>
</tr>
<tr>
<td>L1 (mm)</td>
<td>16</td>
</tr>
<tr>
<td>L2 (mm)</td>
<td>12</td>
</tr>
<tr>
<td>L3 (mm)</td>
<td>16</td>
</tr>
<tr>
<td>D1 (mm)</td>
<td>2</td>
</tr>
<tr>
<td>D2 (mm)</td>
<td>2.5</td>
</tr>
<tr>
<td>$\theta_1/\theta_2/\theta_3$</td>
<td>2.5°/0°/2°</td>
</tr>
<tr>
<td>Diffraction Quality factor Q_D</td>
<td>858 / 1175 / 1443 / 1852</td>
</tr>
</tbody>
</table>

![Diagram of cavity geometry and field profile](image-url)
Conventional Cavity $\text{TE}_{43,15}$-Mode Gyrotron Multi-Mode Calculations

- $f_0 = 236.04$ GHz ($\lambda_0 = 1.27$ mm)
- Cavity radius 20.88 mm (loading: 2 kW/cm²)
- Beam radius 9.06 mm
- Operating parameters: 9.130 T, 58 keV, 39 A, velocity ratio $\alpha = 1.25$
- 0.83 MW output power ($\eta_{\text{el}} = 36\%$; with margins)

Multi-mode Self-consistence time dependence calculation using the EURIDICE package supports the single mode stable RF output.
(Main mode: $\text{TE}_{43,15}$, 99 neighboring modes)
Gyrotron Simulations with Realistic Beam Parameters

- With consideration of the *perpendicular velocity spread* (Gaussian Spread)

<table>
<thead>
<tr>
<th>β_1 spread (rms) (%)</th>
<th>α spread (rms) (%)</th>
<th>Output Power (P_{out}) (kW)</th>
<th>Efficiency (η)(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>829</td>
<td>37.7</td>
</tr>
<tr>
<td>6</td>
<td>15.4</td>
<td>780</td>
<td>36.0</td>
</tr>
<tr>
<td>8</td>
<td>20.5</td>
<td>744</td>
<td>34.7</td>
</tr>
<tr>
<td>10</td>
<td>25.63</td>
<td>700</td>
<td>33.4</td>
</tr>
</tbody>
</table>

- With consideration of the *radial beam width*

<table>
<thead>
<tr>
<th>Radial width (RL = Larmor Radius)</th>
<th>Radial Width/λ_0</th>
<th>Output Power (P_{out}) (kW)</th>
<th>Efficiency (η)(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2*RL</td>
<td>0.113</td>
<td>827</td>
<td>37.72</td>
</tr>
<tr>
<td>3*RL</td>
<td>0.169</td>
<td>821</td>
<td>37.48</td>
</tr>
<tr>
<td>4*RL</td>
<td>0.225</td>
<td>815</td>
<td>37.15</td>
</tr>
<tr>
<td>5*RL</td>
<td>0.282</td>
<td>801</td>
<td>36.46</td>
</tr>
<tr>
<td>6*RL</td>
<td>0.338</td>
<td>Unstable mode</td>
<td>64------</td>
</tr>
</tbody>
</table>
Output Power and Operating Parameters of Conventional Cavity Gyrotron with Wall Loading $> 2 \text{ kW/cm}^2$

<table>
<thead>
<tr>
<th>Maximum Wall Loading (kW/cm2)</th>
<th>Output Power (kW)</th>
<th>Beam Energy (keV)</th>
<th>Beam Current (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00</td>
<td>830</td>
<td>58.00</td>
<td>39.00</td>
</tr>
<tr>
<td>2.30</td>
<td>965</td>
<td>60.00</td>
<td>42.00</td>
</tr>
<tr>
<td>2.48</td>
<td>1050</td>
<td>60.00</td>
<td>47.00</td>
</tr>
</tbody>
</table>
Summary & Acknowledgments

Conclusions

- DEMO-compatible 1 – 2 MW, CW gyrotrons at an operating frequency of 237.5 GHz are under investigation at KIT.

- Mode selection strategy including aspects of multi-frequency and step-tuning operation has been shown in this presentation.

- Design of the other gyrotron components (MIG, quasi-optical converter) is currently progressing.

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.