Predictive Analysis of NTM Suppression by 170GHz ECCD in KSTAR

By
Y.S. Park
and Y.S. Hwang

Department of Nuclear Engineering,
Seoul National University, Seoul, Korea

KO-JA Joint Workshop on
RF Heating Physics in Fusion Plasmas

NFRI, Daejeon, Korea
January 14th~15th 2008
Index

- Overview of NTM suppression in KSTAR

- Simulations of ECCD optimization
 - Optimization of ECCD vertical launch location
 - Optimal current drive on NTM surfaces by 170GHz ECCD
 - Current drive simulations with different ECCD frequencies
 - Optimization of plasma equilibrium for improved ECCD performance

- Numerical analysis of ECCD phase modulation effect

- Stability analysis of NTMs in KSTAR

- NTM control simulator development
Overview of NTM Suppression in KSTAR

- In future high confinement discharges of KSTAR, onset of NTMs will be inevitable and severely degrade the confinement and also can be a potential risk to disruption.

- For active suppression of NTMs, 170GHz ECCD system will be implemented around year 2010 and 3/2 NTM suppression experiment will be started with initial 1MW ECCD power and 2/1 NTM suppression will be followed.

- We have to predict performance of NTM stabilization under the proposed NTM control environment of KSTAR and should derive optimized control parameters for successful NTM suppression.

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Commission</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
<th>SUM (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>07 08 09</td>
<td>10 11 12</td>
<td>13 14 15</td>
<td>16 17 18</td>
<td>19 20 21</td>
</tr>
<tr>
<td>EC H&CD (MW)</td>
<td>0.5 (84GHz)</td>
<td>1(0.8) 1(0.8)</td>
<td>1 (0.8)</td>
<td>1 (0.8)</td>
<td>1 (0.8)</td>
</tr>
<tr>
<td>SUM (MW)</td>
<td>22</td>
<td>21</td>
<td>09</td>
<td>08</td>
<td>07</td>
</tr>
</tbody>
</table>

First plasma NTM suppression? (P_{NEF}=2.7MW, P_{LH}=1MW)

- The number in parenthesis is deliverable power to the plasma

- Conceptual design of multi-MW KSTAR ECCD launchers in equatorial port (PPPL)

- KSTAR in-vessel control coils for control of plasma position, field error, RWMs (also expected to be used for ELM & NTM suppression)
Conceptual Design of KSTAR NTM Controller

Plasma radial position movement, non-resonant field injection

NBI

Plasma rotation, \(q \)-profile modification

ECCD launch angle, power, phase modulation

ECCD

(170GHz, max. 4MW)

RT Steering Mirror
(2.8m, -0.3m)

ECE

Algorithm \(^{[1]}\)

Island width, phase

Island width \((w)\)

Island location

Island phase

ECE

NTM Controller
(in the PCS)

Real-time MSE-EFIT
(\(q \)-profile reconstruction)

Diagnostics (MSE, ECE, Mirnov, …)

ECCD deposition location, driven current, profile

TORAY
(offline)

\[w > w_c \quad w < w_c \]

\[q = \frac{3}{2}, \frac{2}{1} \] location

IVCC

NB

NUPLEX
NUclear Plasma Experiments

SEOUL
NATIONAL UNIVERSITY
Simulation of Reference NTM Discharge Scenario in KSTAR

- Reference NTM discharge simulation by ONETWO (I_p=2MA, B_T=3.5T, P_{NBI}=14MW for target $\beta_N=2.5$)

 ※ Input n_e, T_e, T_i profiles for ONETWO are obtained from DIII-D #122906 multiplied by constant factor

Plasma parameter

<table>
<thead>
<tr>
<th>Reference EFIT</th>
<th>Plasma parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQDISK</td>
<td>g010004.01040</td>
</tr>
<tr>
<td>B_T</td>
<td>3.5T</td>
</tr>
<tr>
<td>I_p</td>
<td>2.0MA</td>
</tr>
<tr>
<td>R_0</td>
<td>1.79m</td>
</tr>
<tr>
<td>a</td>
<td>0.5m</td>
</tr>
<tr>
<td>κ_x</td>
<td>2.0</td>
</tr>
<tr>
<td>δ_x</td>
<td>0.8</td>
</tr>
<tr>
<td>β_N</td>
<td>2.49</td>
</tr>
<tr>
<td>β_p</td>
<td>1.33</td>
</tr>
<tr>
<td>$I_i(1)$</td>
<td>0.982</td>
</tr>
<tr>
<td>q_0</td>
<td>1.1</td>
</tr>
<tr>
<td>q_{95}</td>
<td>3.75</td>
</tr>
</tbody>
</table>

(a) Density profiles of ion, electron, NBI driven current and bootstrap current (j_{bs} from Sauter's model)

(b) Ion, electron temperature profiles and safety factor profile of reference NTM discharge scenario
Optimization of ECCD Launch Location for NTM Suppression

- Vertical location of ECCD launch location is optimized using a criterion for the optimization figure of merit of driven current profile (measure of profile localization), I_{EC}/δ_{EC}^2 [2]

ECCD launch from the lowest allowable location, $z=-30\text{cm}$, shows maximum profile figure of merit for both $q=3/2$ and $2/1$ surfaces.

(a) ECCD driven current, (b) FWHM of driven current density profile and (c) profile figure of merit

The most highly localized driven current density profiles for $q=3/2$, $2/1$ can be obtained from ECCD launch from $z=-30\text{cm}$ vertical location.
Optimized 170GHz ECCD Parameters for 3/2 & 2/1 NTMs

- Optimal ECCD ray trajectories for \(q = 3/2 \) and 2/1 deposition using 170GHz 2\(^{nd}\) harmonic resonance ECCD in TORAY-GA (\(z_{\text{mirror}} = -30\,\text{cm} \))

ECCD Deposition Parameters on \(q = 3/2 \) and 2/1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(q = 3/2)</th>
<th>(q = 2/1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{\text{mirror}}) (m)</td>
<td>2.785</td>
<td></td>
</tr>
<tr>
<td>(Z_{\text{mirror}}) (m)</td>
<td></td>
<td>-0.30</td>
</tr>
<tr>
<td>Poloidal launch angle</td>
<td>63.0(^\circ)</td>
<td>56.9(^\circ)</td>
</tr>
<tr>
<td>Toroidal launch angle</td>
<td>167.6(^\circ)</td>
<td>156.7(^\circ)</td>
</tr>
<tr>
<td>(\rho) (=deposition center)</td>
<td>0.540</td>
<td>0.724</td>
</tr>
<tr>
<td>(j_{\text{EC}}/P_{\text{EC}}) (kA/m(^2)/MW)</td>
<td>49.07</td>
<td>44.63</td>
</tr>
<tr>
<td>(I_{\text{EC}}/P_{\text{EC}}) (kA/MW)</td>
<td>13.65</td>
<td>20.35</td>
</tr>
<tr>
<td>(\delta_{\text{EC}}) ((\rho), FWHM)</td>
<td>0.034</td>
<td>0.047</td>
</tr>
<tr>
<td>(\delta_{\text{EC}}) (cm) *</td>
<td>1.48</td>
<td>1.73</td>
</tr>
<tr>
<td>(I_{\text{EC}}/\delta_{\text{EC}}^2) (kA/rho(^2)/MW)</td>
<td>12.06x10(^3)</td>
<td>9.39x10(^3)</td>
</tr>
</tbody>
</table>

* Radial widths in cm unit are calculated in the outboard midplane
Performance of Outboard Deposited 170GHz ECCD is Poor

- Disadvantages of 170GHz ECCD under $B_T=3.5T$
 - Strong effect of electron trapping causes low current drive efficiency (Ohkawa current)
 - Difficulties in determining optimum launch angles
 - Vertical location of resonance point is sensitive to plasma conditions
 - We have to carefully control the poloidal launch angle also
 - In low beta($\beta_N<2$), q_{95} should be reduced to drive current on $q=3/2$
 - In higher beta, current drive width can be broadened

- How can we improve ECCD performance?
 - Move cyclotron resonance layer to inboard region of plasma
 - Reduce B_T or use different ECCD frequency
 - Change q-profile (raise q_{95}) to move NTM surface to core region
 - High T_e can improve ECCD performance and make 2/1 NTM less dangerous
 - but NTM stability can be degraded from enhanced interactions between MHD activities
 - Increase local T_e around NTM surface by auxiliary heating

- Shape of 170GHz 2nd harmonic resonance layer (pink) in $\beta_N=3.5$(left) and $\beta_N=2.5$(right) plasmas.
 Contours of $q=3/2$(green) and $q=2/1$(blue) surfaces in $\beta_N=3.5$(solid) and $\beta_N=2.5$(dashed) plasmas.
ECCD utilizing 110GHz O-wave fundamental harmonic resonance exhibits higher driven current than 170GHz ECCD but the profile figure of merit, I_{EC}/δ_{EC}^2, is reduced from broad profile

$\rightarrow \delta_{EC}$ is too broad

- Optimal ECCD ray trajectories & driven current density profiles for $q=3/2$ & $2/1$ deposition using 110GHz 1st harmonic resonance ECCD in TORAY-GA ($z_{mirror}=-30\text{cm}$)

<table>
<thead>
<tr>
<th>ECCD Deposition Parameters on $q=3/2$ and $2/1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{mirror} (m)</td>
</tr>
<tr>
<td>Z_{mirror} (m)</td>
</tr>
<tr>
<td>Poloidal launch angle</td>
</tr>
<tr>
<td>Toroid. launch angle</td>
</tr>
<tr>
<td>Rho (=deposition center)</td>
</tr>
<tr>
<td>j_{EC}/P_{EC} (kA/m²/MW)</td>
</tr>
<tr>
<td>I_{EC}/P_{EC} (kA/MM)</td>
</tr>
<tr>
<td>δ_{EC} (rho, FWHM)</td>
</tr>
<tr>
<td>δ_{EC} (cm)</td>
</tr>
<tr>
<td>I_{EC}/δ_{EC}^2 (kA/rho²/MM)</td>
</tr>
</tbody>
</table>

* Value in brackets are from 170GHz ECCD
120GHz ECCD for 3/2 NTM under 3.5T Equilibrium

- By increasing the frequency of 110GHz O-wave 1st harmonic ECCD from 110GHz to 120GHz, improved current drive on 3/2 NTM is possible.

ECCD Deposition Parameters on q=3/2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{mirror} (m)</td>
<td>2.785</td>
</tr>
<tr>
<td>Z_{mirror} (m)</td>
<td>-0.30</td>
</tr>
<tr>
<td>ECCD frequency</td>
<td>110GHz, 120GHz</td>
</tr>
<tr>
<td>Poloidal launch angle</td>
<td>90.0°, 76.0°</td>
</tr>
<tr>
<td>Toroidal launch angle</td>
<td>169.3°, 171.81°</td>
</tr>
<tr>
<td>R_0 (deposition center)</td>
<td>0.540, 0.541</td>
</tr>
<tr>
<td>$J_{\text{EC}}/P_{\text{EC}}$ (kA/m²/MW)</td>
<td>107.11, 135.56</td>
</tr>
<tr>
<td>$I_{\text{EC}}/P_{\text{EC}}$ (kA/MM)</td>
<td>74.24, 60.92</td>
</tr>
<tr>
<td>δ_{EC} (rho, FWHM)</td>
<td>0.087, 0.055</td>
</tr>
<tr>
<td>δ_{EC} (cm)</td>
<td>3.83, 2.45</td>
</tr>
<tr>
<td>$I_{\text{EC}}/\delta_{\text{EC}}^2$ (kA/rho²/MM)</td>
<td>9.79x10^3, 19.97x10^3</td>
</tr>
</tbody>
</table>

* Radial widths in cm unit are calculated in the outboard midplane.
128GHz ECCD for 2/1 NTM under 3.5T Equilibrium

- By increasing the frequency of 110GHz O-wave 1st harmonic ECCD from 110GHz to 128GHz, improved current drive on 2/1 NTM is possible.

<table>
<thead>
<tr>
<th>ECCD Deposition Parameters on $q=2/1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{mirror} (m)</td>
</tr>
<tr>
<td>Z_{mirror} (m)</td>
</tr>
<tr>
<td>ECCD frequency</td>
</tr>
<tr>
<td>Poloidal launch angle</td>
</tr>
<tr>
<td>Toroidal launch angle</td>
</tr>
<tr>
<td>R_0 (deposition center)</td>
</tr>
<tr>
<td>j_{EC}/P_{EC} (kA/m²/MW)</td>
</tr>
<tr>
<td>I_{EC}/P_{EC} (kA/MW)</td>
</tr>
<tr>
<td>δ_{EC} (rho, FWHM)</td>
</tr>
<tr>
<td>δ_{EC} (cm) *</td>
</tr>
<tr>
<td>I_{EC}/δ_{EC}^2 (kA/rho²/MW)</td>
</tr>
</tbody>
</table>

* Radial widths in cm unit are calculated in the outboard midplane.

- Optimal ECCD ray trajectories & driven current density profiles for $q=2/1$ deposition using 128GHz O-wave 1st harmonic resonance ECCD from TORAY-GA.

Resonance layer is moved to inboard side.
B_T = 2.5T, I_p = 1.4MA Equilibrium for 3/2 NTM with 170GHz ECCD

- ECCD figure of merit can be greatly increased in case of inboard deposition by eliminating the current drive degradation by electron trapping which is majorly occurred in outboard region (I_p = 1.4MA, B_T = 2.5T, 170GHz ECCD)

ECCD Deposition Parameters on q=3/2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{mirror} (m)</td>
<td>2.785</td>
</tr>
<tr>
<td>Z_{mirror} (m)</td>
<td>-0.30</td>
</tr>
<tr>
<td>Poloidal launch angle</td>
<td>63.0°</td>
</tr>
<tr>
<td>Toroidal launch angle</td>
<td>167.6°</td>
</tr>
<tr>
<td>Rho (deposition center)</td>
<td>0.540</td>
</tr>
<tr>
<td>(\delta_{EC}/P_{EC}) (kA/m²/MW)</td>
<td>49.07</td>
</tr>
<tr>
<td>(I_{EC}/P_{EC}) (kA/MM)</td>
<td>13.65</td>
</tr>
<tr>
<td>(\delta_{EC}) (rho, FWHM)</td>
<td>0.034</td>
</tr>
<tr>
<td>(\delta_{EC}) (cm) *</td>
<td>1.48</td>
</tr>
<tr>
<td>(I_{EC}/\delta_{EC}^2) (kA/rho²/MM)</td>
<td>12.06x10²</td>
</tr>
</tbody>
</table>

* Radial widths in cm unit are calculated in the outboard midplane.
ECCD Deposition Parameters on \(q = \frac{3}{2} \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{\text{mirror}}) (m)</td>
<td>2.785</td>
</tr>
<tr>
<td>(Z_{\text{mirror}}) (m)</td>
<td>-0.30</td>
</tr>
<tr>
<td>Poloidal launch angle</td>
<td>56.9°</td>
</tr>
<tr>
<td>Toroidal launch angle</td>
<td>76.0°</td>
</tr>
<tr>
<td>(\rho_{\text{center}})</td>
<td>0.724</td>
</tr>
<tr>
<td>(\delta_{\text{EC}}) (cm)</td>
<td>0.92</td>
</tr>
<tr>
<td>(\delta_{\text{EC}}) (RFHM)</td>
<td>0.047</td>
</tr>
<tr>
<td>(\delta_{\text{EC}}) (cm) *</td>
<td>1.73</td>
</tr>
<tr>
<td>(I_{\text{EC}}/P_{\text{EC}}) (kA/MW)</td>
<td>44.63</td>
</tr>
<tr>
<td>(I_{\text{EC}}/P_{\text{EC}}) (kA/MM)</td>
<td>20.35</td>
</tr>
<tr>
<td>(I_{\text{EC}}/\delta_{\text{EC}}^2) (kA/rho^2/MM)</td>
<td>9.39x10^3</td>
</tr>
</tbody>
</table>

* Radial widths in cm unit are calculated in the outboard midplane.

ECCD figure of merit can be greatly increased in case of inboard deposition by eliminating the current drive degradation by electron trapping which is majorly occurred in outboard region (\(I_p=1.35 \text{MA}, B_T=2.35 \text{T}, 170 \text{GHz ECCD} \))
Summary of Current Drive Performances

Driven current densities from optimized plasma equilibrium exhibits the most highly enhanced ECCD performance.

- 170GHz ECCD under $B_T=3.5T$
- From frequency optimization ($f_{ECCD}=120\text{GHz}$ for 3/2 NTM, $f_{ECCD}=128\text{GHz}$ for 2/1 NTM)
- From equilibrium optimization ($I_p=1.4\text{MA}$, $B_T=2.5T$ for 3/2 NTM, $I_p=1.35\text{MA}$, $B_T=2.35T$ for 2/1 NTM)
Modified Rutherford Equation for KSTAR NTM Stability Analysis

- Compact form of modified Rutherford equation for NTM stability analysis

\[
\frac{\tau_R}{r_s} \frac{dw}{dt} = \Delta r_s + \delta \Delta' r_s + a_2 \frac{L_q}{w} \left[1 - \frac{w_{marg}^2}{3w^2} - K_1 \left(\frac{j_{ec}}{j_{bs}} \right) \right]
\]

1st Conventional tearing mode stability: assumed as \(\Delta r_s - m \) for \(m/n \) NTM

2nd Tearing mode stability enhanced by ECCD: Westerhof's analytic model is used with no-island assumption

3rd Destabilization from perturbed bootstrap current: \(a_2 \) is fitted by inferred size of saturated NTM island from ISLAND

4th Stabilizing effect from small island & polarization threshold: assumed as \(w_{marg} \leq 2 \epsilon^{1/2} \rho \) (FWHM of driven current profile) \(\leq \frac{1}{2} \)

5th Stabilization from replacing bootstrap current by ECCD: effectiveness of current drive, \(K_1 \), is calculated from Perkins' current drive model

\[
K_1(x, \tau, o, \epsilon) = \text{func} \left[\begin{array}{c}
\text{size of current drive,} \\
\text{phase modulation, phase delay,} \\
\text{positional misalignment}
\end{array} \right]
\]

\(x = \frac{w}{\delta_o}, \ e : \text{positional misalignment (}= (r - r_c)/\delta_o) \) \\
\(\delta_o : \text{FWHM of driven current profile,} \ o : \text{phase delay (rad)} \) \\
\(\tau : \text{fractional ‘ON’ time of modulation (0 \leq \tau \leq 1)} \)

Evaluation of $\delta \Delta' r_s$ and Fitting of a_2 in MRE

- Enhancement of tearing mode stability from j_\parallel modification by ECCD is evaluated from analytic model [4]

$$\delta \Delta' r_s \approx -\frac{5\pi^{3/2}}{32} a_2 \frac{L_y}{\delta_e} F(x) \frac{j_{ec}}{j_\parallel}$$

with

$$F(x) = \tau - 2.43 e + 1.40 e^2 - 0.23 e^3$$

- Shaping parameter a_2 is fitted by inferred size of saturated NTM island from ISLAND [5]

 - Under the KSTAR reference NTM discharge, widths of saturated 3/2 and 2/1 NTMs are inferred from quasi-linear ISLAND module and a_2 is fitted from growth rates of NTMs with no-ECCD

 From ISLAND,
 \[w_{32\text{sat}} = 4.5\text{cm} \]
 \[w_{21\text{sat}} = 10.5\text{cm} \]

 Fitted shaping parameters, a_2, from NTM growth rates calculated by MRE

 \[a_2 = 2.1 \text{ (for 3/2 NTM)} \]
 \[a_2 = 3.9 \text{ (for 2/1 NTM)} \]

Numerical Analysis of Phase-Modulated ECCD Effectiveness

- ECCD effectiveness, K_1, is calculated by using F.W. Perkins' current drive model [6]

- Driven current density averaged over a volume element of helical flux

$$J(\Phi, x, \tau) = \frac{\langle j_{\text{cd}} \rangle}{j_{\text{cd}}} = \frac{1}{V'(\Phi)} \int \frac{M(\alpha, \tau)}{\sqrt{\Phi + 1 + \cos(m\alpha)}} \exp\left(-x^2\left(\Phi + \frac{1 + \cos(m\alpha)}{2}\right)\right) d\alpha$$

- Current drive effectiveness, K_1, can be calculated as

$$K_1(x, \tau) = \frac{1}{C_2} \int_{-1}^{\infty} W(\Phi) J(\Phi, x, \tau) d\Phi$$

- Distribution of weighting function values over island helical flux (red: stabilization, blue: destab.)

- 50/50 modulated ECCD current density driven over non-dimensional helical flux of island

- K_1 in various schemes of current drive can be described such as

 I: misaligned
 II: phase delayed
 III: misaligned & phase delayed

Current Drive Effectiveness of Continuous & Modulated ECCD

\[K_1 = 0.603 \text{ with } w/\delta_{\text{ec}} = 1.6, \Delta R/\delta_{\text{ec}} = 0 \]

\[\tau = 1 \quad \text{(Continuous)} \]

\[\max. K_1 = 0.866 \text{ with } w/\delta_{\text{ec}} = 1.1, \tau = 0.58, \Delta R/\delta_{\text{ec}} = 0 \]

\[\tau < 1 \quad \text{(Modulated)} \]

\[\text{~44% increase in } \max. K_1 \text{ by modulation} \]

\[K_1 \text{ versus relative size of island & positional misalignment} \]

\[K_1 \text{ versus modulation duty factor & relative size of island} \]

\[\Delta R/\delta_{\text{ec}} = 0.0, 0.5, 1.0, 1.5, 2.0 \]

\[K_1 \text{ vs } w/\delta_{\text{ec}} \]

\[K_1 \text{ vs } \tau \]

\[w/\delta_{\text{ec}} = 0.1, 1.0, 5.0, 10.0 \]
3/2 NTM stability predicted for the target KSTAR NTM discharge (170GHz X2 ECCD)

- Input parameters in MRE

\[
\begin{align*}
\Delta R &= 0 \text{ (=ideal alignment)} \\
\Delta' r_s - m &= -3 \\
L_q &= 31.52 \text{ cm} \text{ (from EFIT)} \\
\delta_{ec} &= 1.48 \text{ cm} \text{ (from TORAY-GA)} \\
j_\parallel &= 185.05 \text{ A/cm}^2 \text{ (from EFIT)} \\
j_{bs} &= 41.66 \text{ A/cm}^2 \text{ (from ONETWO)} \\
j_{ec}/P_{ec} &= 4.91 \text{ A/cm}^2/MW \text{ (from TORAY-GA)} \\
w_{marg} &= 2.23 \text{ cm} = 2 \epsilon^{1/2} \rho_i \text{ (from EFIT)} \\
a_z &= 2.1 \text{ (Inferred from ISLAND calculation)}
\end{align*}
\]

The initial ECCD power of KSTAR (=1MW) can be enough for complete stabilization of predicted 3/2 NTM having \(w_{marg} \equiv 4.5 \text{ cm} \).
2/1 NTM stability predicted for the target KSTAR NTM discharge (170GHz X2 ECCD)

- Input parameters in MRE
 \[\Delta R = 0 \] (ideal alignment)
 \[\Delta r_s - m = -2 \]
 \[L_q = 22.83 \text{ cm} \] (from EFIT)
 \[\delta_{ec} = 1.73 \text{ cm} \] (from TORAY-GA)
 \[j_\phi = 156.69 \text{ A/cm}^2 \] (from EFIT)
 \[j_{bs} = 36.95 \text{ A/cm}^2 \] (from ONETWO)
 \[j_{ec}/P_{ec} = 4.46 \text{ A/cm}^2/\text{MW} \] (from TORAY-GA)
 \[w_{marg} = 1.81 \text{ cm} = 2\varepsilon^{1/2}\rho_{li} \] (from EFIT)
 \[a_z = 3.9 \] (Inferred from ISLAND calculation)

ECCD power of ~2.8MW can stabilize the predicted 2/1 NTM having \(w_{\text{marg}} = 10.5 \text{ cm} \)

→ For both 3/2 & 2/1 NTMs, phase modulation of 170GHz ECCD is not effective because of its narrow driven current profile & effect of \(\delta \Delta r_s \) reduction by modulation
Phase Modulation is Effective Only in Broad δ_{EC} ECCD

- 2/1 NTM stability predicted for the target KSTAR NTM discharge (110GHz O1 ECCD)

- Input parameters in MRE

\[
\begin{align*}
\Delta R &= 0 \quad (=\text{ideal alignment}) \\
\Delta' r_s - m &= -2 \\
L_q &= 22.83 \text{ cm} \quad (\text{from EFIT}) \\
\delta_{\text{ec}} &= 3.21 \text{ cm} \quad (\text{from TORAY-GA}) \\
j_{b_s} &= 36.95 \text{ A/cm}^2 \quad (\text{from ONETWO}) \\
j_{ec}/P_{ec} &= 5.99 \text{ A/cm}^2/\text{MW} \quad (\text{from TORAY-GA}) \\
w_{m\text{arg}} &= 1.81 \text{ cm} \quad (=2\varepsilon^{1/2}/\rho_{ph}) \quad (\text{from EFIT}) \\
a_2 &= 3.9 \quad (\text{Inferred from ISLAND calculation})
\end{align*}
\]

In case of 110GHz ECCD which has broad profile width (>3cm), phase modulation can reduce the minimum ECCD power required for marginal stability of 2/1 NTM.
Prediction of 2/1 NTM Stability by 128GHz ECCD (2MA, 3.5T)

- 2/1 NTM stability predicted for the target KSTAR NTM discharge (128GHz O1 ECCD)

- Input parameters in MRE

\[\Delta R = 0 \quad (= \text{ideal alignment}) \]
\[\Delta' r_s - m = -2 \]
\[L_q = 22.83 \text{ cm} \quad (\text{from EFIT}) \]
\[\delta_{ec} = 1.59 \text{ cm} \quad (\text{from TORAY-GA}) \]
\[j_{\|} = 156.69 \text{ A/cm}^2 \quad (\text{from EFIT}) \]
\[j_{bs} = 36.95 \text{ A/cm}^2 \quad (\text{from ONETWO}) \]
\[j_{ec}/P_{ec} = 7.97 \text{ A/cm}^2/\text{MW} \quad (\text{from TORAY-GA}) \]
\[w_{marg} = 1.81 \text{ cm} \quad (= 2e^{1/2} \rho_{th}) \quad (\text{from EFIT}) \]
\[a_2 = 3.9 \quad (= \text{Inferred from ISLAND calculation}) \]

In case of 128GHz ECCD, ~2MW ECCD power can be enough for complete suppression of 2/1 NTM.
• 2/1 NTM stability predicted for the equilibrium optimized for 3/2 NTM (170GHz X2 ECCD)
SIMULINK Based KSTAR NTM Control Simulator

- KSTAR NTM Stability Model (modified Rutherford Eq.)

- Prototype KSTAR NTM Control Simulator
NTM Control Simulation Results

- **3/2 NTM suppression simulation**
 - Control simulation under different amount of EC-driven current

 - Control simulation under different size of seed island
 - Control simulation under different controller gain (positional offset minimization from plasma radial movement)
Summary

- NTM stabilities are analyzed by construction of modified Rutherford equation under the proposed KSTAR environment
- Reference NTM discharge scenario in KSTAR is developed from ONETWO simulation
- ECCD ray-tracing analysis is performed for the various ECCD schemes by using TORAY-GA
- ECCD effectiveness is analyzed for various deposition schemes including modulated phase effect
- 3/2 NTM which is expected to have small saturated size (~4.5cm) can be completely stabilized by using only 1MW initial ECCD power in KSTAR, but large size 2/1 NTM requires ~2.8MW ECCD power for stabilization
- ECCD launch under low B_T equilibrium is expected to greatly increase current drive performance and can reduce the minimum power required for complete mode suppression to ~1MW for both NTMs