JA–KO Joint Workshop on RF Heating and Current Drive in Fusion Plasmas National Fusion Research Institute (NFRI), Daejeon, Korea, Jan. 14–15, 2008

Development of 1MW–CW Gyrotron for ITER

<u>A. Kasugai</u>, K. Kajiwara, K. Takahashi, N. Kobayashi, and K. Sakamoto

Japan Atomic Energy Agency (JAEA)

Status of 170GHz gyrotron performance

• <u>1hour/0.6MW</u>

Demonstration of steady state operation

 <u>1.0MW/800s/55%</u>
 Satisfied basic requirement of ITER gyrotron (1.0MW/500s/50%)

Contents

- 1. ECH system in ITER
- 2. Gyrotron technologies & improvements
- **3. Experimental results**

CW operation

Scenario to high efficiency operation

4. Summary

ECH system in ITER

Final Target of ITER Gyrotron:

Demonstration of 170GHz, 1MW, 500s, 50% efficiency

Gyrotron Technology

Major Improvements of the Gyrotron

Experimental Result of 170GHz Gyrotron

RF Profile at the Window

Measured RF output profile agreed well with the design.

Measured stray radiation was reduced to $\sim 2\%$ of output power by optimization of the launcher & mirrors.

RF Transmission Line for Long Pulse Experiment

Stable One Hour Operation

Steady State Operation
0.6 MW/1hour (steady state operation) was achieved

Output Energy =2.1GJ

Stable oscillation No arcing and good vacuum 10⁻⁵ Pa during operation

No problem of cooling capacity because of low stray radiation

Clear prospect for application to the **ITER ECH** system

0.8s 3600s: Short aging time within 2 weeks

Try to High Efficiency Operation

First demo by Bc scan with CW operation

Cavity field, Bc (T)

Scenario for High Efficiency Operation

1MW/800s/55% operation

Ib~30A (0.8MW)

Increase of beam current

1MW/800s/55% attained with triode operation.

The development mission of ITER (1MW, 500s, 50%) was attained.

Power Balance of 1MW Operation

Input Beam Power		1853.7
		48.4kVx38.3A
Total measured power		1853.5
	Generated RF power	1111 5
	at cavity (A + B)	1111.3
	Collector heat load	742

RF Loss in the Gyrotron (A)	87.2
relief windows	8.7
DC Break ceramic insulator	15.2
Mirrors (1st~3rd)	5.9
Launcher & Jacket	15.3
Beam tunnel	2.6
Gyrotron body & 4th mirror	5
Cavity	34.5

Gyrotron Output (B)	1024.3
Dummy Load	968
Miter Bends	2.7
Waveguide	8
MOU	45.6

(unit : kW)

Input power and generated RF power and collector heat load are balanced.

Quick Start of ~800kW operation

Oscillation characteristics in Hard self-excitation region

Total Shot Number

Pulse width (s)

Total Shots Number > 10s : ~ 1000 shots No damage & No problem of oscillation

Demonstration of higher reliability

Summary

In development of 170GHz ITER gyrotron

• <u>1.0MW/800s/55%</u>

Oscillation in hard self-excitation region by active parameter control

Basic objective for ITER gyrotron was attained with triode operation.

• <u>1hour/0.6MW</u>

stable steady state operation.