Present Status of 28 GHz Gyrotron Test System in NFRI

Byungjae Park¹

Jin-Hyun Jeong¹, Seungil Park¹, Moo-Hyun Cho¹, Won Namkung¹, Sangjin Ahn², Wonsun Han², Young Soon Bae²

¹ POSTECH, Department of Physics, Plasma Sheath Laboratory ² National Fusion Research Institute

> KO-JA Joint Workshop on RF Heating Physics in Fusion Plasmas Jan. 14-15, 2008 National Fusion Research Institute (NFRI), Daejeon, Korea

Contents

- Motivation
- 28 GHz gyrotron
- Magnet system
- Power supply system
- Gun activation
- Waveguide components
- Summary

POSTECH

Two Toshiba gyrotron tubes (without their magnet systems) had been provided by Tsukuba university, Japan in June, 2006.

This gyrotron was used for 28 GHz ECH system for Gamma10 Tandem mirror device in Plasma Research Center (PRC), Tsukuba University.

In 2007, 28 GHz gyrotron test system was set up using NFRI superconducting magnet which was used for 28 GHz gyro-klystron system in Hanbit mirror device.

28 GHz gyrotron (Toshiba E3955D)

Specification of 28 GHz gyrotron

Parameter	Maximum	Nominal data	unit
Beam voltage	90	75	kV
Beam current	9	8	А
Anode voltage	35	28.8	kV
Heater voltage	13	7.8	Vdc
Heater current	9	5.8	Adc
Cavity magnetic flux density	1.35	1.1	Т
Cathode magnetic flux density	0.17	0.11	Т
Output power(TE ₀₂ mode)	211	205	kW
Efficiency		34.2	%
Pulse width	75	1	ms
Duty factor	0.005	0.002	

Tsukuba magnet system

NFRI magnet system

Comparison of B-field profile at 1.05 T

Comparison of B-field profile at 1.21 T

Actual operation data

B-field at cathode center(11.91 cm) = 0.12 T

B-field at cavity center(45 cm) = 1.08 T

NFRI magnet B-field profile for 28 GHz gyrotron

NFRI

Set-up for B-field measurement

B_r field measurement

Comparison of E-beam trajectories by EGUN code

	Tsukuba data	NFRI simulation data	unit
Emittance	497	2610	pi-mm-mrad
Normalized emittance	278	1460	pi-mm-mrad
<γ>	1.1459	1.1459	
Energy	74.5454	74.5391	keV
Gamma difference	0.02	0.03	%
Voltage difference	0.17	0.27	%
<r></r>	3.957	4.145	mm
$<\beta_z>$	0.3799	0.4012	
$<\beta_t>$	0.3066	0.2776	
$<\beta_t><\beta_z>$	0.8070	0.6919	
Average pitch factor, $<\beta_t/\beta_z>$	0.8073	0.6936	

28 GHz corresponds to a wavelength of 10.71 mm.

For operation in the $TE_{n,m}$ mode, the cavity radius is related to λ by $R_0 = x_{n,m}^{\dagger} \lambda / 2\pi$ where $x_{n,m}^{\dagger}$ is the *mth* root of $J_n^{\dagger}(x)$.

Cavity radius : $R_0 = 11.96 mm (TE_{02} \text{ mode}, 28 \text{ GHz})$

For operation at the first harmonic the optimum beam radius is given by

Beam radius : $R_e = x_{n \pm 1,i} R_o / x_{n,m} (i = 1 \text{ or } 2)$

In general, the corotating mode (with the lower sign) is chosen, since this provides better coupling of the beam to the RF field.

Beam radius :
$$R_e = \frac{1.8412}{7.0156} \times 11.96 \, mm \cong 3.14 \, mm$$

Operation cavity mode and beam radius

 TE_{02} mode in circular waveguide $e^{-jk_z z}$ propagation bas been assumed. (:: $k_c^2 = k^2 - k_z^2$) $E_{\rho}(\rho,\phi,z) = 0$ $E_{\phi}(\rho, \phi, z) \sim J_{0}(k_{c}\rho) = -J_{1}(k_{c}\rho)$ $-J_1$ 0.2 $-k_c
ho$ 0 2 6 8 -0.2 -0.4

Wall location

POSTECH

Beam location

-0.6

-0.8

Operation cavity mode and beam radius

 TE_{02} mode result by MWS

x-axis versus E-field (arb. amplitude)

Calculation of beam radius by mirror ratio

Conservation of Magnetic Moment $\mu = 1/2mv^2/B = const.$ $\Rightarrow B_G r_G^2 = B_C r_C^2$

Where, B_G and B_C are the B-fields at cathode center and cavity center, respectively, and r_G and r_C are the beam radii at the cathode center and cavity center, respectively.

For $r_G = 9.21$ mm, Mirror ratio, $R = B_C/B_G = r_G^2/r_C^2 = 9.21^2/3.14^2 = 8.6$

For NFRC B-field profile, R = 1.08/0.12 = 9 $r_{C} = (9.21^{2}/9)^{1/2} = 3.07$ mm

E-beam trajectories under NFRI magnet B-field

Beam data under NFRI magnet B-field

	Cavity center	Body end	unit
Emittance	3550	2810	pi-mm-mrad
Normalized emittance	1980	1580	pi-mm-mrad
<γ>	1.1450	1.1462	
Energy	74.0878	74.6981	keV
Gamma difference	0.07	0.07	%
Voltage difference	0.52	0.54	%
<r></r>	3.096	6.358	mm
$<\beta_z>$	0.3622	0.4641	
$<\beta_t>$	0.3249	0.1520	
$<\beta_t><\beta_z>$	0.8971	0.3276	
Average pitch factor, $<\beta_t/\beta_z>$	0.9004	0.3280	

Beam radius r=3.096 mm by E-gun simulation is similar r=3.14 mm calculated by operation theory.

E-beam trajectories under NFRI & Tsukuba B-field

POSTECH

KO-JA Joint Workshop, Jan. 14-15 2008

NFRI

Power supply for 28 GHz gyrotron (Repairing)

Schematics of NFRI power supply

Power supply: - 80 kV, 10 A, 100 ms

() : **PCT**

Modulating anode power supply: - 40 kV ~ - 60 kV

Filament power supply: 20 V, 20 A

Gun activation

RF power and frequency measurement

Directional coupler: RF power and frequency measurement using power meter Dummy load: RF power measurement with calorimetric method

Summary

- 1. The development of 28 GHz gyrotron system was promoted at National Fusion Research Institute (NFRI).
- 2. We obtained the required B-field: 1.08 T at cavity center and 0.12 T at cathode center using NFRI magnet system.
- By E-gun simulation, the e-beam trajectory shows the possibility to operate 28 GHz gyrotron under NFRI magnet B-field profile.
- 4. These results are also fit to 28 GHz, TE_{02} mode gyrotron operational theory.
- 5. We are now preparing power supply, RF waveguide components and gun socket for high voltage wiring.
- 6. 28 GHz gyrotron will be capable to generate the RF beam with 150 kW, 50 ms at NFRI system.

